

Rumore pericoloso per l'udito sul posto di lavoro

II modello Suva

I quattro pilastri della Suva

- La Suva è più che un'assicurazione perché coniuga prevenzione, assicurazione e riabilitazione.
- La Suva è gestita dalle parti sociali: i rappresentanti dei datori di lavoro, dei lavoratori e della Confederazione siedono nel Consiglio d'amministrazione. Questa composizione paritetica permette di trovare soluzioni condivise ed efficaci.
- Gli utili della Suva ritornano agli assicurati sotto forma di riduzioni di premio.
- La Suva si autofinanzia e non gode di sussidi.

Suva

Tutela della salute Settore fisica Casella postale, 6002 Lucerna

Informazioni

Tel. 041419 61 34 akustik@suva.ch

Download

(disponibile solo in formato PDF) www.suva.ch/waswo/44057.i

Rumore pericoloso per l'udito sul posto di lavoro

Autore

Dr. Beat Hohmann, Walter Lips, Heinz Waldmann, Settore fisica

Riproduzione autorizzata, salvo a fini commerciali, con citazione della fonte. 1^a edizione – luglio 1988 Edizione completamente riveduta – novembre 2009 4^a edizione ampliata – ottobre 2011

Codice

44057.i

Sommario

1	Introduzione	3	4	Disposizioni e valori limite	29
•	Dein sini dan damantali di assatisa	-	4.1	Quadro generale	29
2	Principi fondamentali di acustica	5	4.2	La prevenzione degli infortuni sul lavoro e	20
2.1	Generazione del suono	5	4.0	delle malattie professionali	30
2.2	Pressione sonora	5	4.3	Direttiva CFSL 6508 concernente l'appello)
2.3	Frequenza	5		ai medici del lavoro e agli altri specialisti	20
2.4	Onde sonore e propagazione del suono	7	4.0.1	della sicurezza sul lavoro	32
2.5	Potenza sonora	8	4.3.1	Pericoli particolari	32
2.6	Livello di pressione sonora	9	4.3.2	Individuazione dei pericoli Analisi del rischio	33
2.7	Livelli di pressione sonora ponderati	10	4.3.3		33
2.8	Livelli di pressione sonora integrati sul	4.4	4.3.4	Partecipazione dei lavoratori	33
0.01	periodo di misura	11	4.4	Prevenzione sanitaria e approvazione	00
2.8.1	Livello sonoro equivalente	11	4.5	dei piani	33
2.8.2	Livello di esposizione sonora L _E .	11	4.5	Sicurezza di prodotti	34
2.9	Livello di potenza sonora	12	4.6	Disposizioni relative alle immissioni	0.4
2.10	Analisi delle frequenze	13	4 7	di rumore esterno	34
2.11	Segnali acustici	14	4.7	Valori limite per la protezione dal rumore	0.5
2.11.1	Suoni semplici, suoni complessi, rumori	14	4 7 4	pericoloso per l'udito	35
2.11.2	, , ,	15	4.7.1	Suono stazionario	35
2.12	Campi sonori	16	4.7.2	Suono a impulsi	35
2.12.1	Campo sonoro libero	16	4.7.3	Misure per la protezione dell'udito	35
2.12.2	Campo sonoro diffuso	17	4.8	Valori di riferimento per il rumore fastidioso	
2.12.3	Il campo sonoro negli ambienti industriali	17	4.0.4	sul posto di lavoro	36
_			4.8.1	Valori di riferimento per attività	36
3	L'udito	19	4.8.2	Valori limite per i rumori di fondo negli	
3.1	L'orecchio e il processo uditivo	19		ambienti di lavoro	36
3.2	La percezione del suono	20	4.9	Altri criteri di valutazione del rumore	36
3.3	L'esame audiometrico dell'udito	21	4.9.1	Ultrasuoni	36
3.4	Gli effetti dell'età sulla capacità uditiva	22	4.9.2	Infrasuoni	37
3.5	Danni uditivi causati dal rumore	23	4.10	Ordinanza sugli stimoli sonori ed i raggi	
3.6	La valutazione della capacità uditiva	26		laser	37
3.7	Altri effetti del rumore	26	4.11	Norma SIA 181, Protezione dal rumore	
3.7.1	Comprensione orale e percezione			nelle costruzioni	38
	dei segnali	26	4.12	Dichiarazione del rumore secondo la	
3.7.2	Fastidiosità del rumore	27		Direttiva macchine europea	38
3.7.3	Effetti extrauditivi	28	4.13	Misure di protezione dell'udito secondo	
				la Direttiva europea sul rumore	38
			5	Fonometria	40
			5.1	Obiettivo della misurazione fonometrica	
				del rumore	40
			5.2	Componenti dei fonometri	40
			5.3	Dispositivi per la misurazione e l'analisi	
				del rumore sul posto di lavoro	43
			5.4	Consigli pratici per le misurazioni	
				fonometriche	46
			5.5	Le misurazioni acustiche della Suva	48

6	Valutazione dell'esposizione al		8	Dispositivi di protezione individuale	68
	rumore	49	8.1	Quando le misure tecniche non bastano	68
6.1	Determinare il livello di esposizione al rumo	ore	8.2	Informare e istruire	68
	L _{EX}	49	8.3	La protezione ottimale per l'udito	68
6.1.1	Fondamenti	49	8.4	Uso quotidiano	70
6.1.2	Calcolo del livello di esposizione al rumore		8.5	Udibilità dei segnali con i protettori	
	L _{EX}	49		auricolari	7
6.1.3	Livello di esposizione giornaliera e annuale	51			
6.1.4	Strumenti pratici per determinare il livello d	i	9	Prevenzione dei danni uditivi	
	esposizione al rumore L _{EX}	51		da rumore	73
6.1.5	Esempi di calcolo	52	9.1	La protezione dell'udito nel sistema di	
6.2	Valutazione dell'esposizione al rumore			sicurezza aziendale	73
	impulsivo	54	9.1.1	Piano di protezione dell'udito in azienda	73
6.2.1	Fondamenti	54	9.1.2	Come comportarsi in caso di emergenza	73
6.2.2	Calcolare i parametri di valutazione	54	9.1.3	Sospetto danno uditivo da rumore: come	
6.2.3	Applicazione dei criteri di valutazione	54		comportarsi	75
6.3	Valutazione del posto di lavoro	55	9.2	La prevenzione dei danni uditivi alla Suva	75
6.3.1	Valutazione dei rischi con le tabelle genera	li	9.2.1	Esami dell'udito nell'audiomobile	75
	del rumore	55	9.2.2	Quali persone devono sottoporsi ai test	
6.3.2	Misurazioni svolte dall'azienda	55		nell'audiomobile?	76
6.3.3	Misurazioni svolte dalla Suva nelle singole		9.2.3	Organizzazione e svolgimento degli esami	
	aziende	56		dell'udito	7
6.4	Protocollo di misura del rumore	56	9.2.4	L'esame nell'audiomobile	79
6.5	Tabelle generali del rumore	58	9.3	Percentuale delle persone esposte al	
6.5.1	Livello di esposizione al rumore in base			rumore in base ai settori professionali	79
	all'attività svolta	58	9.4	Tendenza dell'esposizione professionale	
6.5.2	Livello sonoro equivalente L _{eq}	59		al rumore	80
	·		9.5	Prevenzione dei danni all'udito:	
7	Bonifica acustica	60		una strategia vincente	80
7.1	Riferimenti di legge	60	9.6	Rumore e tempo libero	8
7.2	Principi di lotta al rumore	60			
7.3	Misure antirumore	61	10	Riepilogo	82
7.4	Sorgente di rumore: priorità d'intervento 1	61			
7.4.1	Riduzione del rumore alla sorgente	61	Apper	ndice 1:	
7.4.2	Riduzione della trasmissione sonora	62	Mater	riale di approfondimento	83
7.4.3	Riduzione della radiazione sonora	62		Bibliografia	83
7.4.4	Incapsulaggio	63		Testi di legge	83
7.4.5	Trasporto e trasbordo di materiale	63		Norme	83
7.5	Locali di lavoro: priorità d'intervento 2	65			
7.5.1	Suddivisione spaziale	65	Apper	ndice 2:	
7.5.2	Misure di acustica architettonica	65	Defini	izione delle grandezze fonometriche	84
7.6	Riduzione dell'esposizione al rumore:			Definizioni internazionali, riferimenti a	
	priorità d'intervento 3	67		norme	84
7.6.1	Organizzazione del lavoro	67			
7.6.2	Dispositivi di protezione individuale	67	Apper	ndice 3:	
			Grand	lezze fisiche e acustiche, unità di	
			misur	a	86

1 Introduzione

Chi non ci sente bene ha difficoltà a comunicare e sprofonda spesso nella solitudine. Ma la comunicazione è vitale, e l'udito è il suo organo principale.

In Svizzera, circa 200 000 persone in 22 000 imprese sono esposte a rumore pericoloso per l'udito. La Suva si impegna da decenni per la prevenzione dei danni uditivi da rumore. La legge le assegna il mandato di vigilare sull'applicazione delle disposizioni sulla prevenzione delle malattie professionali in tutte le aziende della Svizzera.

I risultati raggiunti con la prevenzione dei danni uditivi negli ultimi decenni sono stati notevoli. Mentre nel 1973 il 37 per cento delle persone visitate dagli specialisti della Suva presentava un danno uditivo leggero o evidente, nel 2004 la percentuale era scesa al 9 per cento. Ciò corrisponde ad un calo del 75 per cento. Ciononostante, ancora oggi si registrano quasi 700 casi di danno uditivo irreversibile all'anno (2004), tanto che l'ipoacusia da rumore occupa ancora il terzo posto fra le malattie professionali più diffuse.

Quarant'anni fa sono stati introdotti in Svizzera i primi valore limite di rumore per i posti di lavoro industriali. Da allora la riduzione tecnica del rumore si è concentrata su tre livelli:

- introduzione di processi lavorativi più silenziosi
- incapsulamento delle macchine
- insonorizzazione degli ambienti di lavoro

Tuttavia, l'applicazione delle misure tecniche per la riduzione del rumore non è ancora conclusa e rimane un impegno costante.

Figura 1: elevata esposizione al rumore durante i lavori all'interno di un tunnel.

Già nel 1976 la Suva effettuava il 100000° test dell'udito a bordo dell'audiomobile. Questi controlli hanno fortemente sensibilizzato i lavoratori e li hanno motivati a portare le protezioni auricolari. Oggi gli audiometristi della Suva visitano ogni anno circa 4000 imprese e verificano la capacità uditiva di circa 4000 persone in cinque audiomobili. Oltre il 90 percento delle persone visitate portano oggi un dispositivo di protezione auricolare.

Questa nuova edizione muove dagli sviluppi positivi che si sono osservati dalla prima edizione del 1988:

- l'interesse per una soluzione al problema del rumore è fortemente aumentato
- le disposizioni di legge per l'architettura degli ambienti di lavoro sono state ampliate (Legge sul lavoro, ordinanze 3 e 4)
- l'acustica architettonica nelle officine e nei capannoni industriali è migliorata, anche se, a questo proposito, c'è ancora molto da fare.

- in molti posti di lavoro il livello di rumore è stato sensibilmente ridotto grazie all'impiego di macchine più silenziose e all'introduzione di nuovi processi lavorativi
- sempre più lavoratori portano dei dispositivi di protezione auricolare nei posti di lavoro altamente rumorosi
- sul mercato sono disponibili dei nuovi e più confortevoli dispositivi di protezione auricolare, in particolare i seguenti tipi:
 - inserti auricolari con caratteristiche d'attenuazione decisamente migliori
 - inserti auricolari con caratteristiche lineari di isolamento acustico, adatti soprattutto per i musicisti
 - dispositivi individuali di protezione acustica (inserti e cuffie antirumore) che filtrano solamente i rumori di intensità superiore a 80 dB
- si possono acquistare dei fonometri economici, maneggevoli e di facile utilizzo che permettono anche ai non esperti di effettuare delle misurazioni del rumore

Figura 2: in molti processi industriali i lavoratori sono esposti a livelli di rumore molto alti (addetto ad un impianto di imbottigliamento).

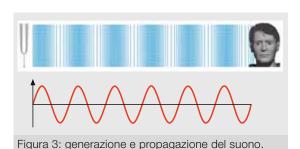
Dall'entrata in vigore della direttiva CFSL concernente l'appello ai medici del lavoro e agli altri specialisti della sicurezza sul lavoro, i fondamenti normativi della lotta al rumore sono cambiati e si sono fatti notevoli passi in avanti nell'applicazione di misure efficaci. Nei sistemi di sicurezza aziendale il rumore figura esplicitamente tra i pericoli particolari. Il datore di lavoro ha il dovere di prendere misure a tutela della salute dei dipendenti.

Negli ultimi anni, i criteri di valutazione dell'esposizione al rumore sono stati costantemente adeguati alle norme e direttive più attuali e alle nuove conoscenze.

Gli esperti della Suva si occupano anche dell'esposizione al rumore nel tempo libero, della valutazione delle caratteristiche acustiche negli ambienti di lavoro e delle emissioni sonore autorizzate per le macchine. Tali argomenti non sono tuttavia oggetto di questa pubblicazione. Per informazioni in proposito si rimanda al sito www.suva.ch/rumore.

Questo opuscolo contiene nozioni di base e informazioni dettagliate sul rumore, i suoi effetti e i modi per combatterlo. Il sommario e l'indice analitico permettono al lettore di trovare rapidamente singoli argomenti.

2 Principi fondamentali di acustica


2.1 Generazione del suono

Il suono consiste nelle vibrazioni di un mezzo elastico (gas, liquido, corpo solido). Senza la materia, ossia nel vuoto, non può generarsi alcun suono.

Il suono può generarsi direttamente nell'aria. Ciò avviene nei seguenti casi:

- quando il volume di un gas cambia improvvisamente (esplosione, detonazione, scoppio di un palloncino)
- quando si forma un vortice in un flusso di gas o su corpi solidi in rapido movimento (fuoriuscita di aria compressa, rumore del vento)
- quando entrano in vibrazione delle colonne d'aria (ad esempio nelle canne di un organo o in un flauto).

Si parla invece di generazione indiretta del suono quando le vibrazioni di corpi solidi (ad esempio le componenti di una macchina, le campane, il diapason, la membrana dell'altoparlante) si trasmettono all'aria circostante (fig. 3) e provocano in essa un suono.

2.2 Pressione sonora

La pressione si misura in Pascal [Pa] (1 Pa = $1 \text{ N/m}^2 = 10 \text{ µbar}$). I movimenti delle particelle d'aria (fig. 3) causano delle oscillazioni di pressione che interferiscono con la più forte pressione statica (pressione atmosferica).

Pressione atmosferica ~ 100 000 Pa
Pressione sonora massima del
linguaggio (in 1 m di distanza dal
parlante) ~ 1 Pa
Variazione della pressione atmosferica in seguito ad un cambiamento
di altitudine di 8 cm ~ 1 Pa

In seguito ad un semplice stimolo come quello indotto da un diapason, la pressione sonora oscilla attorno al valore quiescente e si genera una vibrazione acustica periodica sinusoidale (fig. 4). Maggiore è l'ampiezza dell'oscillazione, più forte è il tono.

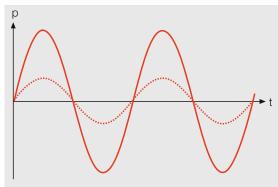


Figura 4: ampiezza dell'oscillazione: il tono 1 (linea continua) è più forte del tono 2 (linea tratteggiata).

2.3 Frequenza

Il tempo che trascorre fino al ripetersi di un determinato stato in una vibrazione acustica periodica è definito come **periodo T** (fig. 5). La quantità di questi periodi (oscillazioni) per unità di tempo viene percepita come altezza tonale del suono ed è denominata **frequenza f**. Essa si misura in Hertz [Hz] (= oscillazioni al secondo).

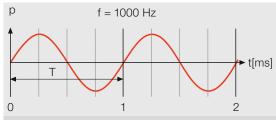
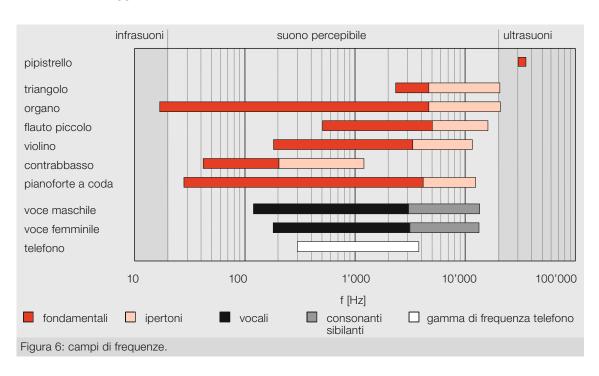


Figura 5: periodo e frequenza: oscillazione di periodo T = 1 ms = 1000 oscillazioni al secondo = 1000 Hz.

$$f = \frac{1}{T}$$
f: frequenza [Hz]
T: periodo [s]
Formula 1

1 kHz = 1'000 Hz = 1000 oscillazioni al secondo: tono di riferimento.

Per convenzione la fascia di frequenze compresa tra 20 Hz e 20 kHz è definita suono percepibile. Le frequenze inferiori a 20 Hz rientrano nel campo degli infrasuoni, mentre quelle superiori a 20 kHz corrispondono agli ultrasuoni (fig. 6).


Nella musica, lo spettro di frequenze prodotta dagli strumenti a percussione è compreso all'incirca tra i 30 Hz e i 16 kHz. Il diapason internazionale (tono di riferimento a') si trova attorno ai 440 Hz.

Il linguaggio si colloca tra i 100 Hz e gli 8 kHz. Le frequenze più alte sono quelle delle sibilanti (curve tratteggiate), soprattutto la «s» e la «f». La trasmissione della voce attraverso la linea telefonica è limitata allo spettro compreso fra 300 e 3500 Hz.

Il brusio di un televisore di modello semplice (50 Hz, non «100 Hz») ha una frequenza di circa 15,6 kHz (frequenza orizzontale). Gli infrasuoni sono emessi sia da sorgenti naturali (tuono, onde marine, ecc.), sia da macchine e dispositivi tecnici (motore diesel marino, jet, ecc.).

Anche gli ultrasuoni si trovano sia in natura che nella tecnica. I pipistrelli, ad esempio, si orientano grazie agli ultrasuoni. Nell'industria questi ultimi vengono invece impiegati per la pulizia di pezzi, per la saldatura di materiali plastici e per il controllo non distruttivo dei materiali, mentre in medicina trovano applicazione nella diagnostica e nella terapia¹⁾.

¹⁾ Cfr. pubblicazione Suva 66077 «Bruits des installations à ultrasons».

2.4 Onde sonore e propagazione del suono

Analogamente alle onde concentriche che si formano sulla superficie dell'acqua in seguito al lancio di un sasso, anche le fluttuazioni di pressione, innescate ad esempio dallo scoppio di un palloncino, si diffondono nell'aria in tutte le direzioni. La velocità di propagazione di queste **onde sonore** nell'aria, ovvero la **velocità del suono c**, dipende soprattutto dalla temperatura. A 0°C essa è paro a 331 m/s, a 20°C raggiunge i 343 m/s ovvero 1225 km/h.

c ≈ 340 m/s Velocità del suono nell'aria

Nella propagazione dell'onda sonora la frequenza non subisce alcuna variazione. La distanza fra due punti ripetitivi di una forma d'onda sonora equivale alla **lunghezza d'onda** λ (fig. 7).

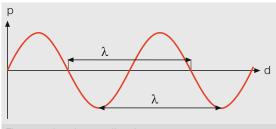


Figura 7: lunghezza d'onda.

Siccome l'onda sonora si propaga alla velocità del suono, si applica quanto segue:

$$\lambda = \frac{C}{f}$$

$$f = \frac{C}{\lambda}$$

$$c = \lambda \cdot f$$

λ: lunghezza d'onda [m]

c: velocità del suono [m/s]

f: frequenza [Hz = 1/s]

Formula 2, 3 e 4

La lunghezza d'onda diminuisce con l'aumentare della frequenza. Nell'aria le onde sonore dello spettro percepibile (da 20 Hz a 20 kHz) hanno una lunghezza compresa fra 17 metri e 1,7 centimetri (rapporto 1000 : 1, tabella 1).

Le onde sonore che incontrano un ostacolo possono, come mostra la figura 8, essere riflesse (fenomeno della riflessione) o «inghiottite» dalla materia (assorbimento), penetrare attraverso l'ostacolo (trasmissione) oppure aggirarlo (diffrazione).

Frequenza	Lunghezza d'onda			
20 kHz	1,7 cm			
10 kHz	3,4 cm			
1 kHz	34 cm			
100 Hz	3,4 m			
20 Hz	17 m			
Tabella 1: frequenze e lunghezze d'onda.				

La riflessione, l'assorbimento, la trasmissione e la diffrazione dipendono essenzialmente dalla lunghezza d'onda e quindi dalla frequenza. Per assorbire le onde corte (alte frequenze) sono sufficienti ostacoli di spessore ridotto. Le onde lunghe (basse frequenze), invece, attraversano o aggirano l'ostacolo più facilmente. Un'ombra sonora può formarsi soltanto dietro ad un oggetto le cui dimensioni superano notevolmente la lunghezza d'onda del segnale acustico.

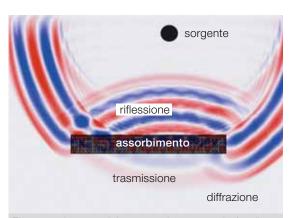
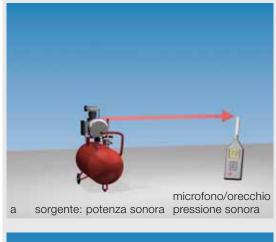
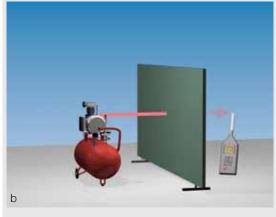


Figura 8: risposte del suono ad un ostacolo (grafico tracciato con il programma «Virtual Wave Tank»; Fraunhofer Institut für Integrierte Schaltungen, Dresda; www.eas.iis.fraunhofer.de)

2.5 Potenza sonora


La grandezza che descrive meglio l'emissione di una sorgente di rumore è la **potenza sonora** (fig. 9). Quest'ultima si misura in watt, la stessa unità di misura utilizzata per la potenza meccani-ca, elettrica e termica. Esempi: un motore ha una potenza di 74 kW = ca. 100 CV; una stufa elettrica trasforma in calore 500 W.


Solitamente, la **potenza acustica** di una sorgente sonora è relativamente ridotta, come mostra la tabella 2. D'altro canto, questi valori dimostrano quanto sia sensibile l'udito.

Frigorifero	1 · 10 ⁻⁸ W	10 nW
Rasoio elettrico	1 · 10 ⁻⁶ W	1 μ W
Tosaerba elettrico di ultima		
generazione	1 · 10 ⁻⁵ W	10 μ W
Violino (fortissimo, volume		
molto alto)	1 · 10 ⁻³ W	1 mW
Martello demolitore pneumatico	1 · 10 ⁻¹ W	0,1 W
Organo (fortissimo)	1 · 10¹ W	10 W
Propulsore a reazione (aereo civile)	1 · 10 ⁴ W	10 kW
Tabella 2: valori di potenza sonora.		

Sia un microfono di misura sia l'orecchio umano reagiscono alla pressione sonora. Quest'ultima, dunque, non solo è misurabile ma è anche determinante per la percezione del suono. La pressione sonora misurata in un punto determinato dipende dai seguenti fattori:

- la potenza sonora generata dalla sorgente (fig. 9a; la potenza e l'energia sonora hanno un andamento proporzionale al quadrato della pressione sonora. Se la potenza sonora si quadruplica, la pressione sonora raddoppia);
- la modalità di propagazione del suono, che può essere più o meno omogenea nelle varie direzioni (a potenza costante una focalizzazione delle onde sonore fa aumentare la pressione acustica nella direzione principale);

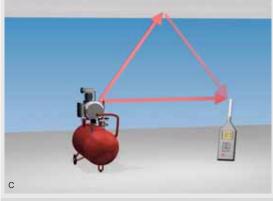


Figura 9: fattori che influiscono sulla pressione sonora in un determinato luogo.

- a: suono diretto
- b: ombra acustica dovuta ad un ostacolo
- c: riflessione

- la distanza dalla sorgente (in campo sonoro libero la pressione sonora si dimezza con il raddoppiare della distanza);
- l'eventuale presenza di ostacoli tra la sorgente e il punto di misura (fig. 9b; gli ostacoli provocano un calo di pressione sonora a seconda della frequenza);
- eventuali fenomeni di forte riflessione causati dal pavimento, dalle pareti o dal soffitto (fig. 9c; la riflessione, in generale, provoca un aumento della pressione sonora);
- l'eventuale presenza di altre sorgenti che contribuiscono a generare una maggiore pressione sonora.

2.6 Livello di pressione sonora

Un orecchio sano è in grado di elaborare uno spettro di pressione sonora molto ampio:

pressione sonora alla soglia di udibilità: $20 \mu Pa = 2 \cdot 10^{-5} Pa = 0,00002 Pa$ pressione sonora alla soglia di dolore: $20 Pa = 2 \cdot 10^{1} Pa$

Il rapporto tra questi valori di pressione sonora è di 1 a 1 milione. Essi non sono quindi sufficientemente pratici e non corrispondono in alcun modo alla sensazione di intensità sonora.

È possibile restringere questo spettro di valori quantificando in decibel il livello di pressione sonora. L'unità di misura decibel (= 1/10 bel), dal nome di A.G. Bell (1847-1922), cui si attribuisce l'invenzione del telefono, viene utilizzata nelle telecomunicazioni per misurare il livello di una potenza, calcolata mediante il logaritmo del rapporto tra due grandezze dello stesso tipo, di cui una assunta come riferimento. Se si applica questo principio alla pressione sonora, ovvero se la si rapporta al valore della pressione sonora alla soglia di udibilità (valore di riferimento), si ottiene la definizione di livello di pressione sonora o livello sonoro (per convenzione, l'espressione «livello sonoro» è sinonimo di «livello di pressione sonora» ma non di «livello di potenza sonora»).

$$L_p = 10 \text{ lg } \frac{p^2}{p_0^2} \text{ [dB]} \qquad \qquad L_p = 20 \text{ lg } \frac{p}{p_0} \text{ [dB]}$$

L_p: livello di pressione sonora in decibel [dB]

p: pressione sonora misurata

p₀: sonora di riferimento (soglia di udibilità), p₀ = $2 \cdot 10^{-5}$ Pa

Formula 5 e 6

Nota: il fattore 10 si applica alle grandezze proporzionali alla potenza (potenza, energia e intensità sonora) e al quadrato della pressione sonora, mentre il fattore 20 è attribuito alla pressione sonora e alle grandezze ad essa proporzionali (tensione elettrica ecc.). La figura 10 riporta parallelamente dei tipici livelli di pressione sonora e i relativi valori di pressione sonora.

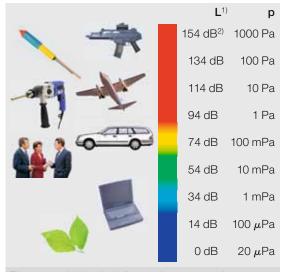


Figura 10: tipici valori di pressione sonora L e relativo livello sonoro p.

- 1) calcolati con ponderazione A (vedi punto 5.2);
- valori di picco sul breve periodo misurati vicino all'orecchio (costante di tempo «peak», vedi punto 5.2)

Se diverse sorgenti sonore sono attive contemporaneamente, le potenze sonore si sommano. Il livello sonoro Ltotal generato da n macchine, ciascuna con lo stesso livello sonoro L₁, si calcola tramite la formula 7:

$$L_{total} = L_1 + 10 \text{ Ig n } [dB]$$

Formula 7

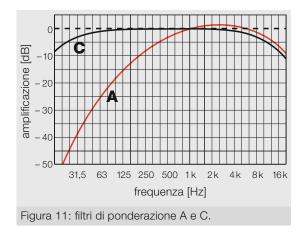
La tabella 3 mostra l'aumento del livello di pressione sonora in seguito al moltiplicarsi del numero di sorgenti sonore identiche. Esempio: se invece di un'unica sorgente sono attive 10 sorgenti sonore contemporaneamente (potenza sonora decuplicata), la pressione sonora si triplica, mentre il livello sonoro aumenta di 10 dB.

$ L_1 - L_2 $	K		
da 0 a 1 dB	3 dB		
da 2 a 3 dB	2 dB		
da 4 a 8 dB	1 dB		
oltre 9 dB	0 dB		
Tabella 4: somma di livelli sonori.			

Numero di sorgenti sonore uguali	Potenza	Pressione	Livello
	sonora	sonora	sonoro
	x 100	x 10	+ 20 dB
****	x 10	x 3	+ 10 dB
	x 4	x 2	+ 6 dB
	x 2	x 1,4	+ 3 dB
	x 1	x 1	+ 0 dB

Tabella 3: aumento del livello di pressione sonora in seguito al moltiplicarsi del numero di sorgenti identiche.

Se i livelli delle singole sorgenti sonore si differenziano l'uno dall'altro, i relativi valori di potenza sonora si sommano. Eseguendo tale somma è possibile ricavare un livello unico (formula 8).


$$L_{index} = 10 \text{ Ig } \left(10^{0,1 \cdot L_1} + 10^{0,1 \cdot L_2} + \dots + 10^{0,1 \cdot L_n} \right) \text{ [dB]}$$
 Formula 8

Invece di eseguire il calcolo secondo la formula 8, è possibile inserire i singoli valori di livello sonoro in un foglio di calcolo excel (www.suva.ch/rumore). Per effettuare delle stime si può utilizzare la tabella 4: considerata la differenza tra i valori di livello sonoro $L_1 - L_2$ si ottiene il valore K (arrotondato al decibel intero più vicino), il quale va sommato al livello più alto per ottenere il livello sonoro totale.

Esempio: due sorgenti i cui livelli misurano rispettivamente 90 e 84 dB (ovvero $L_1 - L_2 =$ 6 dB) generano insieme un livello che supera di K = 1 dB il livello più alto tra i due. Il livello totale è quindi uguale a 91 dB.

2.7 Livelli di pressione sonora ponderati

Per rendere conto, seppure in modo approssimativo e semplificato, dei diversi livelli di sensibilità uditiva alle varie frequenze (vedi punto 3.1), si utilizzano dei filtri di ponderazione normalizzati secondo CEI¹⁾ 61672-1. Per valutare la pericolosità di un rumore, il filtro più adeguato è il filtro di ponderazione A (fig. 11).

1) CEI = Commissione elettronica internazionale

2.8 Livelli di pressione sonora integrati sul periodo di misura

Come valore caratteristico di un segnale acustico oscillante è opportuno utilizzare un livello medio dal momento che il livello di pericolosità per l'udito dipende soprattutto dall'energia sonora nel suo complesso.

2.8.1 Livello sonoro equivalente

Dal punto di vista energetico, il livello sonoro equivalente L_{eq} (fig. 12) equivale al livello di pressione sonora variabile. Il periodo di riferimento è il tempo di misura.

$$L_{eq} = 10 \text{ lg } \left[\frac{1}{T_m} \int_{0}^{T_m} \frac{p^2(t)}{p_0^2} dt \right] \text{ [dB]}$$

T_m: tempo di misura

Leq: Livello sonoro equivalente

Formula 9

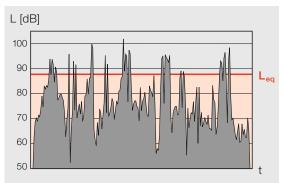
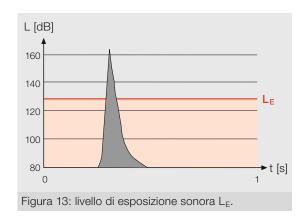



Figura 12: andamento temporale del livello di pressione sonora L(t) e del livello sonoro equivalente L_{eq}.

2.8.2 Livello di esposizione sonora L_E.

Analogamente al livello sonoro equivalente, anche il livello di esposizione sonora $\mathbf{L}_{\mathbf{E}}$ (oppure SEL, Sound Exposure Level) indica un livello medio di energia. Come periodo di riferimento si utilizza tuttavia il secondo, indipendentemente dall'effettivo tempo di misura (fig. 13).

$$L_{E} = 10 \text{ lg } \left[\frac{1}{T_{1}} \int_{0}^{T_{m}} \frac{p^{2}(t)}{p_{0}^{2}} dt \right] \text{ [dB]}$$

T_m: tempo di misura

 T_1 : periodo di riferimento, $T_1 = 1$ secondo

Formula 10

Pertanto, il **L**_E aumenta se il segnale è continuo ma rimane costante in seguito ad un impulso sonoro che si distingue sufficientemente dal livello di fondo. Questa unità di misura è quindi particolarmente adatta per quantificare detonazioni e altri fenomeni acustici isolati.

Il numero di impulsi (n) viene combinato con il $\mathbf{L}_{\mathbf{E}}$ come 10 lg n:

$$L_E = L_{E,1} + 10 \text{ lg n}$$
Formula 11

Esempio: un colpo di fucile provoca, all'orecchio del tiratore, un $L_E = 129$ dB, mentre un'esercitazione di tiro con 40 colpi raggiunge un $L_E = 145$ dB.

Il livello sonoro equivalente $L_{\rm eq}$ e il livello di esposizione sonora $L_{\rm E}$ sono collegati l'uno all'altro tramite il tempo di misura $T_{\rm m}$:

$$L_E = L_{eq} + 10 \text{ lg T}_m \text{ [dB]}$$
 Formula 12

II L_{eq} riferito ad un periodo di 8 ore, ad esempio, si calcola sommando il L_{E} di un impulso $(L_{E,1})$ al numero di impulsi.

$$L_{eq,8h} = L_{E,1} + 10 \text{ lg n} - 44,6 \text{ [dB]}$$

Formula 13

Il livello sottratto di 44,6 dB corrisponde a 10 lg 28800 (8 ore = 28800 secondi).

2.9 Livello di potenza sonora

Come nel caso della pressione sonora, anche per la potenza sonora di una sorgente (vedi punto 2.5) è possibile ricavare un livello L_W secondo ISO 131-1979:

$$L_W = 10 \text{ lg } \frac{W}{W_0} \text{ [dB]}$$

W: potenza sonora [W]

W₀: potenza sonora di riferimento,

$$W_0 = 1 \text{ pW} = 10^{-12} \text{ W}$$

Formula 14

La tabella 5 mostra le potenze sonore e i livelli di potenza sonora di diversi oggetti.

Sorgente sonora	Potenza sonora [W]	L _W [dB]				
Zanzara (in volo)	10 ⁻¹¹	10				
Frigorifero	10 ⁻⁸	40				
PC (senza tastiera, stampante ecc.) 10 ⁻⁷	50				
Rasoio elettrico	10 ⁻⁶	60				
Tosaerba elettrico di ultima generaz	zione 10 ⁻⁵	70				
Motoscooter 50 ccm	10 ⁻⁴	80				
Violino (fortissimo, volume molto al	to) 10 ⁻³	90				
Sega circolare	10 ⁻²	100				
Martello demolitore pneumatico	10 ⁻¹	110				
Clacson dell'automobile	1	120				
Organo (fortissimo)	10	130				
Propulsore a reazione (aereo civile)	104	160				
Tabella 5: tipici valori di potenza sonora e relativi livelli di potenza sonora.						

In campo sonoro libero e in presenza di una sorgente puntiforme ad emissione sferica omnidirezionale (fig. 14) il livello di pressione sonora L_p può essere ricavato come segue dal livello di potenza sonora L_w:

$$L_p = L_w - 20 \text{ lg } \frac{r}{r_0} - 11 \text{ [dB]}$$

r: distanza [m]

 r_0 : distanza di riferimento, $r_0 = 1$ m

Formula 15

Il valore di 11 dB deriva dal fatto che una sfera di raggio r=1 m ha una superficie di $4\pi r^2=12,6$ m² sulla quale si distribuisce la potenza sonora della sorgente. Il livello di pressione sonora su questa superficie è quindi inferiore al livello di potenza sonora di 10 lg (12,6) dB = 11 dB.

Se la superficie della sfera è uguale a 1 m² (raggio = 28 cm), il livello di pressione e il livello di potenza sonora hanno lo stesso valore numerico.

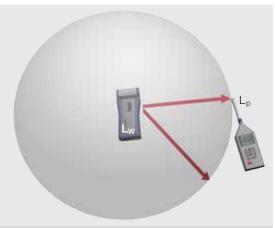


Figura 14: livello di potenza sonora e livello di pressione sonora in campo libero.

A pari distanza, un'emissione direzionale genera un livello di pressione sonora più elevato rispetto ad un'emissione sferica: se, ad esempio, l'emissione sonora avviene in uno spazio semisferico perché la sorgente si trova su di una superficie riflettente di grandi dimensioni, il livello di pressione sonora aumenta di 3 dB (fig. 15).

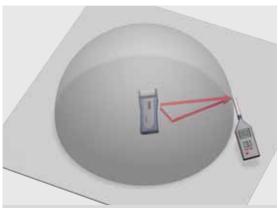


Figura 15: sorgente sonora su una superficie piana, emissione semisferico.

Come si è detto al punto 2.6, il livello di pressione sonora aumenta anche per effetto di parti di suono indirette (riflesse) se il punto di misura non si trova pienamente in campo sonoro diretto (vedi punto 2.12) nonché per effetto di rumori di fondo se il loro livello di pressione sonora nel punto di misura non è inferiore al livello dell'oggetto misurato di almeno 10 dB (somma di livelli acustici, vedi punto 2.6).

Il livello di potenza sonora non può essere misurato direttamente. Può però essere ricavato dal confronto con una sorgente di riferimento, oppure con una misurazione dell'intensità sonora o, ancora, misurando la pressione sonora su una superficie di inviluppo che racchiude la sorgente. In quest'ultimo caso occorre considerare le dimensioni della superficie di inviluppo, gli effetti dello spazio circostante e eventuali rumori di fondo (ISO 3746, DIN 45635). Informazioni più dettagliate sono disponibili nella pubblicazione Suva «Puissance acoustique et mesurages d'homologation» (codice 66027, non disponibile in italiano).

2.10 Analisi delle frequenze

Spesso si suddivide il campo delle frequenze percepibili in diverse fasce di frequenza e si determina il livello di pressione sonora per ognuno di esse. Questo procedimento è necessario, ad esempio, per tenere conto degli effetti della frequenza, come il fonoassorbimento, oppure per valutare in modo approssimativo come un suono viene percepito dall'udito. Anche l'orecchio, infatti, effettua un'analisi delle frequenze.

L'analisi comunemente eseguita in acustica si basa su delle bande di frequenza la cui ampiezza cresce proporzionalmente alla frequenza di centro banda, analogamente agli intervalli musicali. L'analisi in banda stretta e l'analisi di Fourier utilizzano invece un'ampiezza di banda costante.

Per effettuare delle analisi sommarie si utilizzano delle bande di ottava le cui frequenze di centro banda sono ricavate, secondo la norma IEC 225, attraverso il progressivo raddoppio o dimezzamento di una frequenza di 1000 Hz: ... 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16 000 ...

Se occorrono delle analisi di maggiore precisione, ogni banda d'ottava viene scomposta in bande di terzi d'ottava, le cui frequenze di centro banda sono anch'esse stabilite dalla norma sopra citata (tabella 6).

25	50	100	200	400	800	1'600	3'150	6'300	12'500
31,5	63	125	250	500	1'000	2'000	4'000	8'000	16'000
40	80	160	315	630	1'250	2'500	5'000	10'000	20'000
Tabella 6: frequenze di centro banda d'ottava (seconda riga) e di ¹ / ₃ d'ottava normalizzate; valori in Hertz [Hz].									

Le analisi delle frequenze sono solitamente rappresentate in un grafico a barre (fig. 16). L'asse orizzontale corrisponde alle bande di frequenza. Le barre verticali rappresentano invece il livello nelle diverse bande.

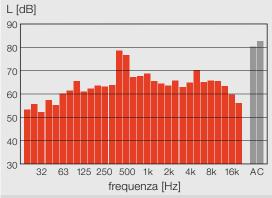


Figura 16: spettro per bande di terzo d'ottava da 20 Hz a 20 kHz.

2.11 Segnali acustici

2.11.1 Suoni semplici, suoni complessi, rumori

La differenza fra suoni semplici, suoni complessi e rumori risiede nello spettro di frequenze (fig. 17).

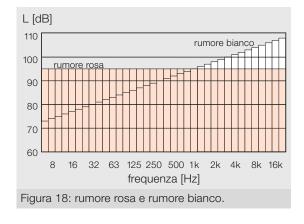


Figura 17: suono semplice, suono complesso, rumore, detonazione.

Un suono semplice consiste in una vibrazione sonora sinusoidale e con una sola frequenza. Esempi: nota di diapason, rumore continuo quando si alza la cornetta del telefono, nota di flauto (approssimativamente). Un suono complesso si compone invece di una fondamentale e diversi armonici, le cui frequenze sono multipli interi della frequenza fondamentale. Gli armonici determinato il timbro del suono. Esempi: timbro di un violino o di strumenti a fiato.

I **rumori** sono segnali non periodici costituiti da diverse frequenze non armoniche, ovvero in rapporto non intero. Per questi suoni non è possibile determinare l'altezza tonale. Esempi: lo scroscio di una cascata, il rumore di un martello picconatore.

Nelle misurazioni acustiche, come segnale di prova si usa spesso il «rumore rosa». Esso mantiene lo stesso livello energetico in ciascun terzo di banda d'ottava e mostra uno spettro in banda di terzi d'ottava piatto. Lo spettro del «rumore bianco», invece, presenta una distribuzione crescente dell'energia verso frequenza, in ragione di 3 dB/ottava (fig. 18).

In base allo spettro si possono distinguere i rumori a banda larga, a bassa e ad altra frequenza.

L [dB] 100 90 80 70 60 50 40 63 125 250 500 1k 2k 4k 8k 16k frequenza [Hz] Figura 19: rumore a banda larga.

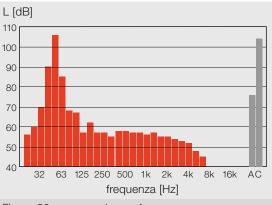
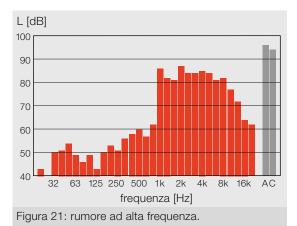



Figura 20: rumore a bassa frequenza.

2.11.2 Rumore continuo, intermittente, impulsivo

La differenza fra rumore continuo, intermittente e impulsivo è data dall'andamento temporale del segnale acustico.

Il rumore continuo presenta un livello di pressione sonora e uno spettro più o meno costanti. Esempio: gruppo elettrogeno di soccorso a motore diesel con regime di rotazione costante.

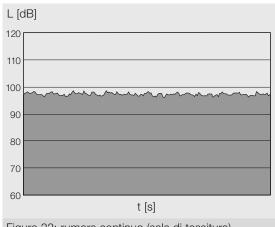


Figura 22: rumore continuo (sala di tessitura).

Nel rumore intermittente si alternano diverse fasi in cui variano sia il livello che lo spettro di frequenze (fig. 23). Un andamento di questo tipo può essere determinato dall'alternarsi di diverse macchine oppure da diverse fasi di funzionamento della stessa macchina. Esempio: motosega a catena, funzionamento a vuoto, alla massima potenza e a carico.

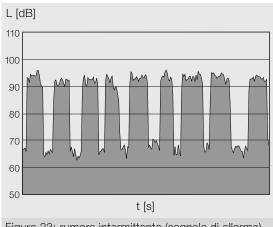
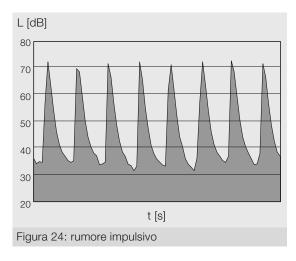



Figura 23: rumore intermittente (segnale di allarme).

Il **rumore impulsivo** è un evento acustico di breve durata con elevati picchi di pressione sonora. Esempio: urti, scoppi, esplosioni.

Esempi estremi sono i colpi di arma da fuoco, i quali, in un milionesimo di secondo, raggiungono un livello di pressione sonora di oltre 150 dB e durano solitamente qualche frazione di secondo (fig. 25).

Figura 25: scoppio dell'airbag, livello di picco L_{peak} = 160 dB(C).

2.12 Campi sonori

2.12.1 Campo sonoro libero

Quando mancano delle superfici delimitanti oppure se esse hanno un forte effetto fonoassorbente, il ricevente avverte esclusivamente il suono diretto. Questo fenomeno si verifica in campo libero, soprattutto su terreni innevati o ricoperti da manto erboso, e in ambienti anecoici o scarsamente riflettenti.

Con l'aumento della distanza si ha una riduzione della pressione sonora. Ciò è dovuto al fatto che l'energia sonora si distribuisce su una superficie sempre più grande («effetto di dissipazione», fig. 26). Nel caso di una sorgente puntiforme, la pressione sonora si dimezza con il raddoppiare della distanza mentre il livello di pressione sonora si riduce di 6 dB.

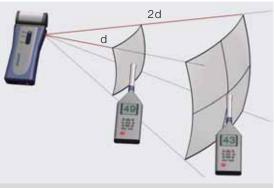


Figura 26: la pressione sonora si riduce con l'aumento della distanza dalla sorgente puntiforme.

Ciò si verifica, tuttavia, soltanto se tutte le dimensioni della sorgente sonora sono inferiori al triplo della distanza di misurazione. Soltanto a queste condizioni, infatti, la sorgente è percepita come puntiforme. Se entrambe le dimensioni della superficie emittente superano il triplo della distanza di misurazione, il livello di pressione sonora si mantiene costante (sorgente piana, ad esempio la facciata di una fabbrica). Se invece una sola dimensione della sorgente sonora supera il triplo della distanza di misurazione, il livello di pressione sonora si riduce di 3 dB al raddoppiare della distanza (sorgente lineare, ad esempio un'autostrada con traffico intenso).

Indipendentemente dai cali di livello dovuti alla geometria della sorgente («effetto di dissipazione»), si manifestano anche degli smorzamenti proporzionali alla distanza, i quali interessano soprattutto le frequenze più elevate (nell'ordine di grandezza dei 4 kHz: ca. 20–30 dB al km). È per questa ragione che si percepisce soltanto un rumore sordo se il tuono.

2.12.2 Campo sonoro diffuso

Si ha un campo sonoro diffuso se sono presenti delle superfici limitanti che riflettono gran parte delle onde sonore. Le onde riflesse provengono da tutte le direzioni e si susseguono con tale rapidità che non si manifesta alcun fenomeno di eco. L'insieme di queste onde sonore dà origine alla riverberazione, la quale si smorza gradualmente in seguito alla disattivazione della sorgente di rumore. Il periodo che il livello impiega per scendere di 60 dB si chiama tempo di **riverberazione** T₆₀ ed è un importante indicatore utilizzato in acustica architettonica. Come già detto al punto 2.3, il fonoassorbimento è correlato alla freguenza. Di conseguenza, anche il tempo di riverberazione dipende dalla frequenza e si misura in bande d'ottava e terzi d'ottava (valori nella fascia delle frequenze medie: in un salotto ca. 0,5 s, in una sala concerti 1-2 s, in una cattedrale 4-8 s).

Per ottenere un campo sonoro diffuso dalle caratteristiche ideali vengono create delle camere riverberanti. Le pareti oblique e convesse ad assorbimento zero riflettono e diffondono le onde sonore in modo talmente omogeneo che la pressione sonora è costante in tutto l'ambiente. Una camera riverberante consente di determinare la potenza sonora generata da un dispositivo o la capacità di assorbimento di un campione di materiale.

2.12.3 Il campo sonoro negli ambienti industriali

In uno stesso ambiente, il campo sonoro libero e il campo sonoro diffuso si sovrappongono. In prossimità della sorgente sonora predomina il suono diretto. L'andamento del livello sonoro dipende dalla distanza e dalle dimensioni della sorgente ma non è affatto correlato alle caratteristiche acustiche dell'ambiente. Per questo motivo, con delle misure di carattere architettonico come l'installazione di un controsoffitto fonoassorbente si riesce a malapena a ridurre il livello di pressione sonora in prossimità della sorgente.

Ad una maggiore distanza dalla sorgente predomina invece il suono indiretto (riflesso). In questo caso il livello di pressione sonora è teoricamente indipendente dalla posizione nello spazio (fig. 27) ed è correlato alle caratteristiche fonoassorbenti dell'ambiente. La distanza alla quale il suono diretto e il suono indiretto si equivalgono è definita raggio di riverberazione. Tuttavia, anche il raggio di riverberazione dipende dalla frequenza. Conseguentemente, il livello sonoro a banda larga ha sempre un andamento irregolare.

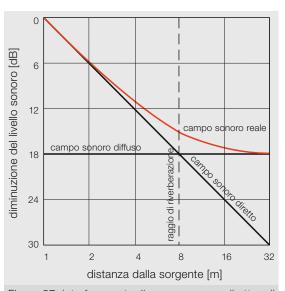


Figura 27: interferenza tra il campo sonoro diretto e il campo sonoro diffuso (raggio di riverberazione 8 m).

In realtà, però, negli ambienti industriali non si ha praticamente mai un vero campo sonoro diffuso. Il livello di pressione sonora continua infatti a scendere anche ad una distanza elevata dalla sorgente. Il decadimento spaziale del livello sonoro per raddoppio della distanza (DL2) può essere usato come indice della qualità acustica di un ambiente (fig. 28, esempi pratici al punto 7.5.2).

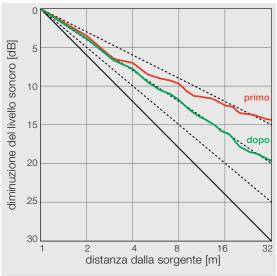


Figura 28: curve di propagazione sonora in un locale; prima della bonifica: DL2 = 2.4 dB dopo la bonifica: DL2 = 4.1 dB

3 L'udito

L'orecchio e il processo uditivo 3.1

In oltre 100 000 anni di evoluzione, la natura ha affinato l'orecchio fino a farlo diventare uno strumento ad alta prestazione in miniatura che, in uno spazio piccolissimo, integra quattro diverse modalità di trasmissione. Il processo uditivo comincia nel padiglione auricolare, il quale raccoglie le onde sonore e sovrappone loro determinate informazioni a seconda della direzione d'incidenza. In seguito, le onde sonore passano al condotto uditivo, dove le frequenze attorno ai 3000 Hz vengono amplificate (risonanza del condotto uditivo), per raggiungere infine il timpano. In questa zona dell'apparato uditivo, la trasmissione avviene attraverso l'aria. Analogamente alla membrana di un microfono, il timpano reagisce alla differenza di pressione fra il condotto uditivo e la cavità dell'orecchio medio (un meccanismo di compensazione della pressione nella tuba di Eustachio, che collega l'orecchio medio al nasofaringe, impedisce l'insorgere di interferenze a causa dei diversi livelli di pressione statica). I tre ossicini (martello, incudine e staffa) trasmettono meccanicamente i movimenti del timpano alla finestra ovale (trasmissione sonora). La finestra ovale è collegata alla coclea, un organo della grandezza di un pisello, diviso in lunghezza dalla membrana basilare e contenente una sostanza liquida (fig. 29).

I movimenti della finestra ovale si propagano attraverso i liquidi labirintici della coclea come onde progressive, le quali, a loro volta, provocano delle vibrazioni in determinate zone della membrana basilare, a seconda della frequenza. Le onde ad alta frequenza interessano la parte in prossimità della finestra ovale, mentre le basse frequenze provocano vibrazioni in direzione del centro della coclea (fig. 30) In questo modo avviene la prima analisi delle frequenze.

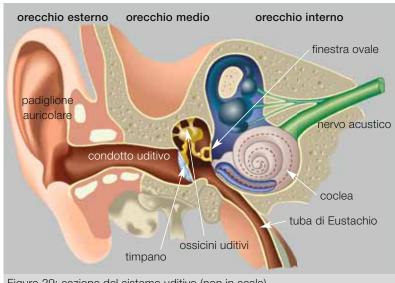
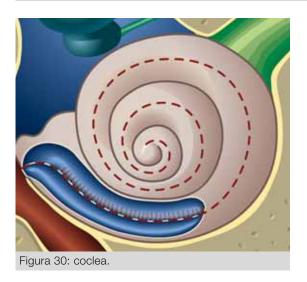
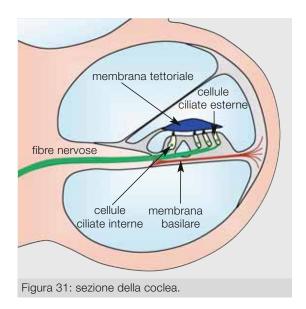




Figura 29: sezione del sistema uditivo (non in scala).

Sulla membrana basilare si trovano circa 3500 cellule sensoriali ricoperte di minuscole ciglia (cellule cigliate o villi), le quali recepiscono i movimenti vibratori e li trasformano in impulsi nervosi (fig. 31). La trasmissione successiva avviene per via elettrica. Oltre ai villi interni, sulla membrana basilare sono presenti altri 15 000 villi esterni. Oggi si sa che essi non sono soltanto dei recettori ma fungono anche da amplificatori o modulatori di frequenza. I villi esterni, infatti, modificano/ottimizzano il comportamento della membrana basilare in funzione del segnale da elaborare. L'udito deve il suo eccezionale potere di discriminazione della freguenza e della durata dei suoni proprio a questo meccanismo attivo, che lo rende estremamente dinamico.

Gli impulsi nervosi vengono infine trasmessi dal nervo acustico alle cellule cerebrali responsabili della percezione uditiva, dove vengono elaborati.

L'udito umano è estremamente sensibile (in fasi precedenti dell'evoluzione la sopravvivenza dipendeva dalla percezione di minimi rumori) ed è in grado di elaborare una gamma di segnali acustici da 0 a 120 dB, dalla soglia di udibilità alla soglia di dolore. Soltanto i microfoni di alta qualità o i supporti audio ad elevata risoluzione come i DVD hanno una dinamica paragonabile a quella del nostro udito; il compact disc raggiunge soltanto i 95 dB.

La trasmissione del suono attraverso l'orecchio esterno e l'orecchio medio non ha la stessa efficacia a tutte le frequenze. Mentre le frequenze basse o molto alte sono attenuate, la trasmissione delle frequenze comprese fra 1 e 6 kHz è ottimale (fig. 32). Questa fascia di frequenze è quindi la più sensibile:

- a 4 kHz è sufficiente una pressione sonora minima per provocare una percezione acustica (punto più basso della soglia di udibilità fig. 33);
- i danni da rumore si manifestano solitamente a partire da 4 kHz. Questa è infatti la frequenza alla quale una sorgente di rumore a spettro piatto (simile al rumore rosa) sollecita maggiormente l'orecchio interno.

Figura 32: risposta in frequenza del campo sonoro libero attraverso l'orecchio esterno e medio fino all'orecchio interno.

La conduzione ossea, ovvero la trasmissione del suono attraverso le ossa craniche, attenua solitamente il suono di 30–50 dB rispetto alla conduzione aerea, come si può facilmente constatare tappandosi entrambe le orecchie. Va osservato che ciò riguarda soltanto il rumore aereo; la propagazione del rumore impattivo nelle ossa craniche presenta infatti caratteristiche diverse.

3.2 La percezione del suono

Innanzi tutto occorre chiedersi entro quale campo di pressione sonora e di frequenze avviene la percezione acustica.

Lo spettro sonoro percepibile non ha limiti precisi. La ragione è che la percepibilità delle frequenze più basse e di quelle più alte dipende essenzialmente dal livello del tono test. Una persona giovane con udito intatto è generalmente in grado di udire un suono di 20 000 Hz (= 20 kHz), limite, questo, che va decrescendo con l'aumentare dell'età. Al di sotto dei 20 Hz, un suono di livello elevato (ad esempio da 100 dB a 10 Hz) viene avvertito dall'apparato uditivo o addirittura in tutto il corpo. Tuttavia, l'orecchio non ne percepisce l'altezza tonale. Il suono viene piuttosto descritto come uno sventolio, un rimbombo o una vibrazione.

Nella figura 33 è rappresentata la soglia di udibilità (rosso), la quale indica il livello sonoro minimo percepibile per ogni frequenza. La curva rappresenta il valore medio riferito a individui di età 20 anni con capacità uditiva normale. Un confronto con la figura 32 mostra che l'andamento della soglia di udibilità è determinato soprattutto dalle caratteristiche della propagazione del suono. Sono inoltre rappresentate le curve di uguale sensazione sonora (isofone).

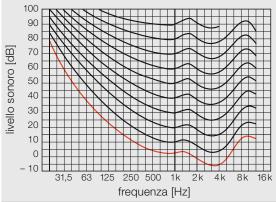


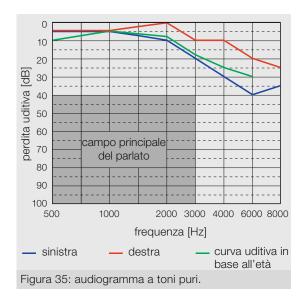
Figura 33: soglia di udibilità e curve di isosensazione (isofone).

A quale differenza di livello raddoppia l'intensità sonora percepita soggettivamente? Grazie a vasti esperimenti con un numero elevato di soggetti e diversi segnali acustici è stato dimostrato che è necessario, in media, un incremento del livello sonoro da 8 a 10 dB.

La percezione dell'altezza tonale del suono dipende dalla frequenza del segnale. Nel caso dei suoni complessi è determinante la componente di frequenza più bassa (la cosiddetta fondamentale). Ogni raddoppio o dimezzamento della frequenza viene percepito come variazione dell'altezza tonale pari ad un'ottava, indipendentemente dal tono di partenza. Questa scala di frequenza logaritmica appare evidente se si osserva la tastiera di un pianoforte: la distanza fra due tasti corrisponde ad un determinato intervallo sonoro e quindi ad un determinato rapporto di frequenza.

L'udito ha un eccellente potere di discriminazione, basato sulla scomposizione spettrale dell'orecchio interno con i suoi meccanismi attivi e soprattutto sull'analisi effettuata dal cervello, il quale confronta le informazioni recepite con i modelli già conosciuti. In questo modo l'udito riesce a distinguere le singole sorgenti sonore che danno origine ad un segnale complesso (ad esempio i singoli strumenti di un'orchestra) e ad identificarle. Un procedimento, questo, che il computer ancora non riesce ad eseguire.

Altre informazioni sulla percezione del suono si trovano nella pubblicazione Suva «Nuisances sonores à l'emplacement de travail», non disponibile in italiano (codice 66058).


3.3 L'esame audiometrico dell'udito

La capacità uditiva individuale si misura solitamente con un audiometro a toni puri e degli auricolari (fig. 34). Questo strumento ha al suo interno un generatore di segnali ed emette suoni alle frequenze consigliate dall'IEC, variandone progressivamente il livello. La posizione «O dB» corrisponde, per ogni frequenza, alla soglia di udibilità media di una persona giovane con udito intatto. Nell'esame audiometrico, il livello del suono test viene aumentato o ridotto di 5 dB alla volta. Il tutto si svolge in una camera insonorizzata e la persona testata segnala con un gesto della mano o con un segnale luminoso se percepisce il suono. Per ogni frequenza e per entrambi gli orecchi si va quindi alla ricerca del tono più basso percepibile, determinando così la soglia di udibilità individuale.

Figura 34: test dell'udito (audiometria a toni puri).

Come grandezza di riferimento (linea dello zero) si utilizza la soglia di udibilità media di una persona giovane non affetta da malattie uditive e senza danni all'udito. Se per una persona occorre alzare il livello sonoro affinché percepisca il suono, si riscontra una perdita uditiva, la quale viene registrata al di sotto della linea dello zero. Le linee che collegano i punti di entrambi gli orecchi formano l'audiogramma (fig. 35). Più la curva è alta e migliore è la capacità uditiva.

Dall'andamento dell'audiogramma il medico può trarre delle conclusioni sul tipo, la gravità e le possibili cause della perdita uditiva. La visita specialistica comprende tuttavia ulteriori esami, come i test con al diapason, le valutazioni della comprensione linguistica a diversi livelli di intensità sonora e la misurazione della conduzione ossea. Oggi si misurano anche i segnali acustici generati dai meccanismi attivi dell'udito (emissioni otoacustiche) o le correnti cerebrali, con il vantaggio che i risultati non dipendono dalla risposta della persona testata.

3.4 Gli effetti dell'età sulla capacità uditiva

L'esperienza insegna che l'udito peggiora con l'avanzare dell'età. La linea dello zero dell'audiogramma può quindi essere presa come riferimento soltanto per le persone giovani, per altre fasce di età è prevedibile un'ipoacusia da invecchiamento.

La perdita di sensibilità uditiva dovuta all'età riguarda per prime e in misura più marcata le frequenze più alte. Negli uomini essa si manifesta generalmente prima che nelle donne. Il processo di invecchiamento avviene soprattutto a livello dell'orecchio interno. Un ulteriore irrigidimento meccanico dell'orecchio medio può causare una perdita uditiva anche nello spettro delle basse frequenze.

La figura 36 mostra delle ipoacusie da invecchiamento medie in donne e uomini di età compresa fra i 40 e i 60 anni. Tuttavia i valori individuali (anche senza l'influsso del rumore/l'effetto del rumore) possono essere fortemente divergenti, come mostra il 10 percentile degli uomini di 60 anni.

Di solito, fino all'età di 60 o 70 anni una normale ipoacusia da invecchiamento non compromette sensibilmente la comprensione linguistica. Se a questo si aggiunge tuttavia un'ipoacusia da rumore, il soggetto ha spesso difficoltà a seguire una conversazione.

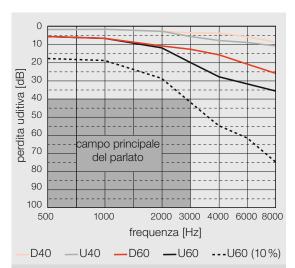


Figura 36: curve medie relative all'ipoacusia da invecchiamento in donne (D) e uomini (U) fra i 40 e i 60 anni e 10 percentile degli uomini di 60 anni secondo ISO 7029.

Se le esposizioni eccessive si sommano, il deficit metabolico aumenta e le cellule cigliate muoiono (fig. 37). Se la persona è costantemente esposta a rumore, le cellule funzionanti diventano sempre di meno, causando una perdita uditiva permanente²).

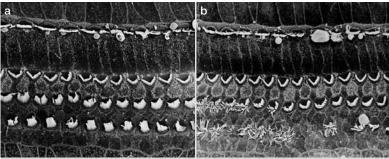


Figura 37: a: villi interni (sopra, una fila) ed esterni (sotto, tre file). b: in seguito a delle esposizioni estreme (negli esperimenti sugli animali) si manifestano danni gravi e sono addirittura visibili dei buchi.

3.5 Danni uditivi causati dal rumore

L'esposizione prolungata al rumore intenso può causare una perdita uditiva irreversibile. L'ipoacusia da rumore continua ad essere una delle malattie professionali più frequenti.

I danni da rumore interessano l'orecchio interno: se l'esposizione a rumore intenso si prolunga nel tempo e il metabolismo dell'orecchio interno non è più sufficiente a sostituire l'energia consumata dai villi, questi muoiono e non si rigenerano più. Non è più possibile ripristinare la loro funzione né con un intervento chirurgico né con i farmaci.

Solitamente l'ipoacusia da rumore ha un decorso di questo tipo: in seguito ad un periodo di esposizione al rumore, l'udito è temporaneamente ovattato (spostamento temporaneo della soglia uditiva¹⁾ e il soggetto ha la sensazione di avere le orecchie tappate. Questo assordamento può essere dimostrato con un esame audiometrico. L'udito si riprende solo gradualmente, impiegando a volte delle ore o addirittura dei giorni.

Un danno uditivo di questa portata implica innanzi tutto la distruzione dei villi esterni. Conseguentemente si ha un peggioramento del potere di a livello della frequenza e della durata del suono. Anche con un'ottimizzazione dell'amplificazione del segnale sonoro, ad esempio grazie ad un apparecchio acustico, questa perdita funzionale può essere compensata solo in parte.

Le perdite uditive dovute al rumore sono insidiose anche per il fatto che progrediscono senza dolore e si manifestano soltanto alle alte frequenze a partire dai 4 kHz. Il soggetto non si rende ancora conto della ridotta capacità uditiva oppure ne sottovaluta la portata, nonostante non sia già più in grado di udire bene le consonanti sibilanti, il campanello della bicicletta o il ticchettio dell'orologio. Le perdite uditive causate dall'esposizione a rumore impulsivo si manifestano tendenzialmente ad una frequenza di 6 kHz e non di 4 kHz.

¹⁾ T.T.S. = temporary threshold shift.

²⁾ P.T.S. = permanent threshold shift.

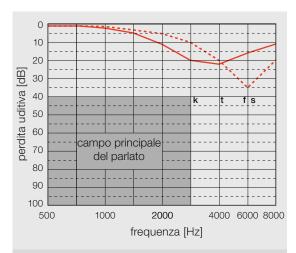


Figura 38: tipica lesione da rumore continuo (—) / rumore impulsivo (- -) e consonanti interessate.

Il calo della capacità uditiva dovuto al rumore progredisce nei primi anni di esposizione, mentre l'ipoacusia da invecchiamento si manifesta più tardi (fig. 39).

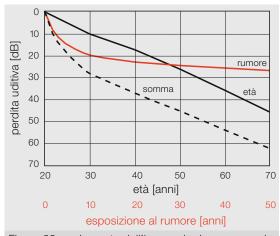


Figura 39: andamento dell'ipoacusia da rumore e da invecchiamento negli uomini, ad una frequenza di 4 kHz, con un'esposizione di 95 dB(A) (secondo ISO 1999–1990).

In seguito ad un'esposizione prolungata, la perdita uditiva si estende inesorabilmente ai suoni linguistici, tanto che per la persona diventa difficile seguire una conversazione se l'ambiente acustico non è particolarmente favorevole e ci sono forti rumori di sottofondo. La perdita uditiva dovuta all'età acuisce ulteriormente questo problema. Alla fine, gli audiolesi capiscono a malapena anche le parole rivolte direttamente a loro in un ambiente silenzioso.

Citazione di una persona affetta da ipoacusia da rumore: «A casa devo alzare sempre di più il volume della radio e della televisione per capire tutto. Mia moglie dice che è troppo alto. Al ristorante faccio fatica a seguire i discorsi, soprattutto se intorno c'è rumore. Mi è già successo di dare risposte completamente sbagliate. Comincio a chiedermi se gli altri non mi prendano per stupido».

La figura 40 mostra un audiogramma in cui si sovrappongono un'ipoacusia da rumore media (corrispondente alla linea continua della figura 38) e un'ipoacusia da invecchiamento leggermente superiore alla media (uomini, 60 anni, 25 percentile). Gli effetti di un'ipoacusia di questo tipo (al limite della rilevanza assicurativa, valore CPT: ca. 35 %, vedi punto 3.6) sono mostrati nel CD AUDIO DEMO 3 della Suva (codice 99051.i).

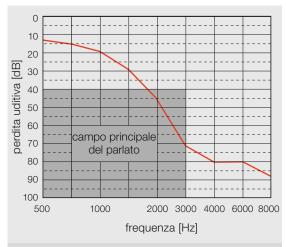


Figura 40: audiogramma con ipoacusia da rumore e da invecchiamento.

La figura 41 mostra quale percentuale di soggetti, a secondo livello di esposizione sonora e della durata del lavoro in ambiente rumoroso, subisce un danno uditivo nella fascia di frequenze del parlato (riferimento: norma ISO 1999–1990, secondo Liedtke BGIA).

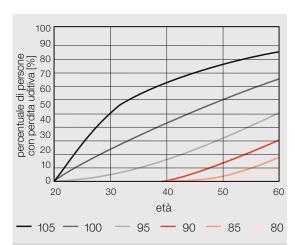


Figura 41: percentuale degli uomini che subiscono una perdita uditiva di 40 dB alla frequenza di 3 kHz, in funzione del livello di esposizione sonora e del tempo (inizio del lavoro in ambiente rumoroso a 20 anni).

In seguito ad un'esposizione eccessiva al rumore (oppure per altre cause) possono manifestarsi anche gli acufeni, percepiti come un fischio alle orecchie, un fruscio o un ronzio. In alcuni casi, non é possibile rimediare nemmeno ricorrendo a delle cure mediche. Il fischio costante alle orecchie si manifesta soprattutto negli ambienti silenziosi, ad esempio nel riposarsi o nell'addormentarsi ed è un disturbo paragonabile ad una perdita uditiva.

Il rischio di contrarre un'ipoacusia non è legato soltanto all'ambiente di lavoro, ma dipende anche dall'esposizione al rumore nel tempo libero e durante il servizio militare. Il fattore decisivo è l'energia sonora totale. L'accumularsi delle esposizioni a rumore sul lavoro e nel tempo libero può rivelarsi fatale perché l'udito non ha il tempo di rigenerarsi. Il rischio di lesione uditiva non ha nulla a che vedere con la risposta emozionale alla fonte di rumore. A seconda dell'intensità sonora e della durata dell'esposizione, infatti, la musica può essere altrettanto dannosa quanto il rumore industriale¹⁾.

In seguito ad una forte detonazione, oltre ad un'eccessiva sollecitazione del metabolismo dell'orecchio interno si ha un sovraccarico meccanico della membrana basilare e delle cellule cigliate. Un solo colpo di fucile senza protettori auricolari, ad esempio, può causare un danno permanente nell'orecchio del tiratore. Il timpano, invece, subisce danni soltanto se il livello di picco di pressione sonora supera i 180 dB²), come nel caso di un'esplosione o di uno schiaffo.

Secondo le conoscenze attuali, un pericolo acuto per l'orecchio interno è determinato più dalla quantità di energia sonora da assimilare nel breve periodo (fino ad un limite di poche ore) che non dal picco sonoro. La grandezza di riferimento più adeguata per misurare questa energia è il livello di esposizione sonora in dB(A).

Si presuppone che, se l'udito è contemporaneamente esposto ad un rumore continuo superiore a 85 dB(A), la predisposizione al danno uditivo in seguito ad una detonazione aumenta. Il punto 9.1.2 spiega come agire in seguito ad un sovraccarico acuto dell'udito.

Non tutte le ipoacusie derivano tuttavia dall' esposizione al rumore. Esistono infatti anche altre cause: irrigidimento meccanico dell'orecchio medio (otosclerosi), processi degenerativi dell'orecchio interno, forte o precoce invecchiamento, malattie ereditarie, infezione, determinati medicinali e trauma cranico.

¹⁾ La pubblicazione Suva «Musica e danni all'udito» (codice 84001.i) spiega come evitare danni uditivi a causa della musica tropo alta.

²⁾ Senza filtro di ponderazione (lineare).

3.6 La valutazione della capacità uditiva

Per valutare la capacità uditiva di una persona, il medico si basa, fra le altre cose, sull'audiogramma a toni puri.

Se la soglia di udibilità devia solo moderatamente rispetto alla linea dello zero, non si può ancora parlare di perdita o addirittura di danno uditivo. Le curve audiometriche devono sempre essere confrontate con l'ipoacusia da invecchiamento media per l'età e il sesso della persona (fig. 36).

Siccome, nella vita quotidiana, la perdita uditiva incide soprattutto sulla comunicazione linguistica, l'audiogramma (fig. 35) accenna già una prima valutazione in questo senso: se le curve audiometriche si trovano chiaramente al di fuori della zona tratteggiata (campo del linguaggio), non sono da attendere danni gravi. Ma maggiore è grande la porzione del campo del linguaggio delimitata dalla curva audiometrica, più il soggetto avrà difficoltà a seguire una conversazione.

In una valutazione più precisa si tiene conto dell'importanza delle singole frequenze per la comprensione linguistica. Il calcolo secondo CPT-AMA1) (vedi «Bewertung des Hörverlusts», codice 86072.d, non disponibile in italiano) valuta le perdite uditive in corrispondenza delle frequenze 500 Hz, 1, 2 e 4 kHz in rapporto a 0,15 : 0,30 : 0,40 : 0,15. Il calcolo viene prima effettuato per entrambe le orecchie. Siccome l'orecchio più sano contribuisce più dell'altro alla comprensione linguistica, la Suva non calcola la perdita dell'udito binaurale CPT (relativa ad entrambi gli orecchi) come media fra i due valori monoaurali (relativi ad un orecchio solo), bensì in un rapporto di 3:1 a favore dell'orecchio più sano. La scala CPT va dallo 0 % (nessuna perdita uditiva) al 100 % (sordità totale). La valutazione si basa sui seguenti valori di riferimento²⁾:

- Perdita dell'udito CPT fino a circa 15 %: capacità uditiva praticamente normale
- Perdita dell'udito CPT circa 15–35%: sintomo di danneggiamento
- Perdita uditiva CPT oltre il 35 %: danneggiamento sostanziale dell'udito

Il calcolo CPT viene effettuato soprattutto per una valutazione della perdita uditiva al fine di eventuali prestazioni assicurative (rilevanza). Per riconoscere tempestivamente un danno uditivo (triage) e per controllare l'efficacia della prevenzione è necessario utilizzare indicatori che diano maggiore peso alle frequenze più alte dell'audiogramma e tengano conto dei cambiamenti riscontrabili tra una visita e l'altra.

3.7 Altri effetti del rumore

Oltre a provocare danni uditivi, il rumore può avere sull'uomo anche altri effetti, i quali si manifestare anche ad un livello sonoro ridotto.

3.7.1 Comprensione orale e percezione dei segnali

Un elevato livello di rumore può rendere difficile o addirittura impossibile la comprensione orale (conversazioni, istruzioni, avvertimenti, vedi fig. 42).

Oltre rendere critica la comunicazione, un elevato livello di rumore porta con sé anche altri svantaggi:

- se i segnali acustici di guasto delle macchine vengono coperti da altre fonti di rumore, è impossibile vigilare «ad orecchio» sul loro corretto funzionamento
- i rumori che segnalano un pericolo (ad esempio l'avvicinarsi di un veicolo) non vengono percepiti in tempo

Ocuncil on Physical Therapy – American Medical Association.

²⁾ Per un'ipoacusia monoaurale si impiegano altri criteri.

 per garantire che i segnali acustici di allarme siano percepiti anche in ambiente rumoroso, sono necessari costosi dispositivi di segnalazione.

3.7.2 Fastidiosità del rumore

La reazione al rumore è fortemente individuale e dipende più dal tipo di rumore che dal livello sonoro. Le caratteristiche fisiche dei rumori (durata, frequenza, andamento temporale, composizione frequenziale, contenuto impulsivo ecc.) non sono sufficienti per valutarne la fastidiosità. Il senso di fastidio dipende anche dal tipo di attività che si svolge (lavoro di concentrazione o attività di routine), dalla tolleranza individuale del rumore o della sorgente e infine dalle caratteristiche biologiche e psicologiche della persona esposta.

Il livello di fastidio è dovuto da un lato alla rumorosità dell'ambiente, dall'altro alla sensibilità individuale (fig. 43). La rumorosità è una grandezza oggettiva determinata dalle caratteristiche del segnale. La sensibilità al rumore è invece soggettiva e dipende in parte dalla situazione, in parte dalle caratteristiche dell' individuo (ricevente).

I rumori possono essere fastidiosi già a partire da 20 dB(A). Se il rumore è di bassa intensità, la sensazione di fastidio è evidentemente dovuta alla quantità di informazioni. Ad un'intensità sonora elevata è invece il livello sonoro ad essere decisivo.

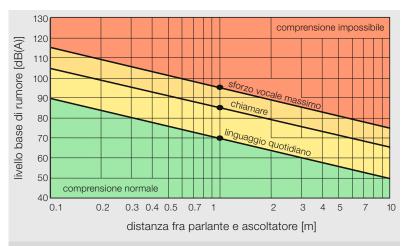


Figura 42: comprensione linguistica in ambiente rumoroso. Esempio: con un rumore ambientale di 100 dB(A), due persone che si trovano a più di 1,5 m di distanza l'una dall'altra non riescono a capirsi perché, anche se il parlante alza voce, è impossibile superare il rumore di fondo.

Figura 43: fastidiosità / effetto del rumore.

3.7.3 Effetti extrauditivi

Alcuni effetti del rumore si ripercuotono sull'intero organismo e influenzano il benessere della persona. Essi si manifestano, in particolare, a livello del sistema nervoso centrale (disturbi del sonno), della psiche (rendimento, concentrazione, irritabilità, aggressività, ecc.) e del sistema neurovegetativo (pressione sanguigna, irrorazione sanguigna, frequenza cardiaca, disturbi gastrointestinali, metabolismo, «reazioni di stress» ecc.). Disturbi di questo tipo sono sintomo di uno stato d'allarme dell'organismo e derivano da uno stato di forte irritazione del sistema neurovegetativo. Tali sintomi si manifestano già a partire da un livello sonoro continuo di 85 dB(A). La diagnosi dei disturbi vegetativi causati dal rumore comporta numerose difficoltà. Ciò non deve tuttavia impedire di introdurre le necessarie misure preventive per impedire l'insorgere di danni alla salute di natura vegetativa.

I cali di rendimento dovuti al rumore riguardano soprattutto le attività intellettuali che richiedono abilità e una buona capacità di elaborare informazioni complesse. Il rumore può inoltre rendere difficoltoso l'apprendimento di determinate competenze. Degli studi hanno dimostrato che elevati livelli di rumore, suoni discontinui o inaspettati e soprattutto i frammenti di linguaggio provocano un forte calo delle prestazioni.

Questi aspetti vengono approfonditi nella pubblicazione Suva 66058 «Nuisances sonores à l'emplacement de travail», non disponibile in italiano.

4 Disposizioni e valori limite

4.1 Quadro generale

Tutte le persone che vivono in Svizzera devono essere protette dal rumore sul lavoro e nel tempo libero. Questo principio trova fondamento in diverse leggi, ordinanze, direttive e norme. Le singole disposizioni definiscono chiaramente le responsabilità e le competenze degli organi d'esecuzione e indicano i valori limite da rispettare. La tabella 7 elenca i più importanti riferimenti di legge relativi alla protezione dal rumore in Svizzera. La figura 44 indica schematicamente quali riferimenti di legge si applicano ai diversi tipi di rumore.

CFSL Commissione federale di coordinamento per la sicurezza sul lavoro Direttiva n. 6508 concernente l'appello ai medici del lavoro e agli specialisti della sicurezza sul lavoro

DM Direttiva 2006/42/CE relativa alle macchine

EN norma europea

ICL ispettorati cantonali del lavoro

ISO International Organization for Standardization

LAINF Legge federale sull'assicurazione contro gli infortuni

LL Legge federale sul lavoro nell'industria, nell'artigianato e nel commercio (Legge sul lavoro)

LPAmb Legge federale sulla protezione dell' ambiente (Legge sulla protezione dell'ambiente) LPGA Legge sulla parte generale del diritto delle assicurazioni sociali

LSPro Legge federale sulla sicurezza dei prodotti

OAINF Ordinanza sull'assicurazione contro gli infortuni

OIF Ordinanza contro l'inquinamento fonico

OLL 3 Ordinanza 3 concernente la Legge sul Lavoro (igiene)

OLL 4 Ordinanza 4 concernente la Legge sul Lavoro (aziende industriali, approvazione dei piani e permesso d'esercizio)

OPI Ordinanza sulla prevenzione degli infortuni e delle malattie professionali

OPM Ordinanza sulla protezione della maternità

OSL Ordinanza concernente la protezione del pubblico delle manifestazioni dagli effetti nocivi degli stimoli sonori e dei raggi laser («Ordinanza sugli stimoli sonori ed i raggi laser»)

OSPro Ordinanza sulla sicurezza dei prodotti SECO Segretariato di Stato dell'economia SIA Società Svizzera degli Ingegneri e

SN norma svizzera

UFAM Ufficio federale dell'ambiente

X valori limite disponibili

degli Architetti

(X) valori limiti parzialmente disponibili

I testi aggiornati di queste leggi e disposizioni sono disponibili on-line (per l'indirizzo internet vedi allegato 1).

Leggi	LAINF	LL	LSPro	LPAmb			
Campo di applicazione	Posto di lavoro	Posto di lavoro	Sicurezza dei prodotti	Ambiente			
	Pericolo per l'udito	Fastidiosità del rumore					
Ordinanze	OAINF, OPI	OLL 3, OLL4, OPM	OSPro	OIF, SLV			
Direttive	CFSL	Indicazioni OLL 3	DM	_			
Valori limite, valori di riferimento	X	X	(X)	X			
Norme	SN, EN, ISO	SN, EN, ISO	SN, EN, ISO	SIA 181			
Organo d'esecuzione	Suva	SECO, ICL	(Suva)	Cantoni			
Tabella 7: riferimenti di legge per la protezione dal rumore in Svizzera (per le abbreviazioni vedi elenco).							

Nell'allegato 1 OPI sono elencate le malattie provocate dall'attività lavorativa ai sensi dell'articolo 9 LAINF. Esso contiene una lista delle sostanze nocive e una lista degli agenti fisici responsabili di determinate patologie. Sono menzionate, fra le altre, le seguenti malattie:

Malattie	Lavori
Lesioni notevoli dell'udito	lavori nel rumore
Malattie cagionate da ultra e infrasuoni	tutti i lavori
Tabella 8: estratto dalla lista delle dall'attività lavorativa.	e malattie causate

4.2 La prevenzione degli infortuni sul lavoro e delle malattie professionali

Le disposizioni principali sulla sicurezza nel lavoro e la tutela della salute sono contenute nelle seguenti leggi e ordinanze:

- Legge federale sull'assicurazione contro gli infortuni (LAINF)
- Ordinanza sull'assicurazione contro gli infortuni (OAINF)
- Ordinanza sulla prevenzione degli infortuni e delle malattie professionali (OPI)

La LAINF definisce gli infortuni professionali all'articolo 7, gli infortuni non professionali all'articolo 8 e le malattie professionali all'articolo 9.

Articolo 9: Malattie professionali

- ¹ Sono malattie professionali quelle (art. 3 LPGA) causate esclusivamente o prevalentemente da sostanze nocive o da determinati lavori nell'esercizio dell'attività professionale. Il Consiglio federale compila l'elenco di tali sostanze e lavori, come pure delle malattie provocate da quest'ultimi.
- ² Sono considerate professionali anche altre malattie di cui è provato siano state causate esclusivamente o in modo affatto preponderante dall'esercizio dell'attività professionale.
- ³ Salvo diversa disposizione, la malattia professionale è assimilata all'infortunio professionale dalla sua insorgenza. Essa è considerata insorta quando l'interessato abbisogna per la prima volta di cura medica o è incapace di lavorare (art. 6 LPGA).

In base all'allegato 1, le lesioni uditive gravi causate dal rumore sul posto di lavoro sono riconosciute come malattia professionale.

Le modalità di valutazione dei danni uditivi e dell'esposizione al rumore sono illustrate al punto 3.6 di questa pubblicazione.

L'articolo 82 LAINF stabilisce le disposizioni generali sulla prevenzione degli infortuni sul lavoro e delle malattie professionali. Esse si applicano anche alla prevenzione dei danni uditivi nei posti di lavoro rumorosi.

Articolo 82: In generale

- Per prevenire gli infortuni professionali e le malattie professionali, il datore di lavoro deve prendere tutte le misure necessarie per esperienza, tecnicamente applicabili e adatte alle circostanze.
- ² Il datore di lavoro deve avvalersi a tale scopo della collaborazione dei dipendenti.
- 3 I lavoratori devono assecondare il datore di lavoro nell'applicazione delle relative prescrizioni. Essi sono in particolare obbligati a utilizzare gli equipaggiamenti personali di protezione, usare correttamente i dispositivi di sicurezza e astenersi dal rimuoverli o modificarli senza il permesso del datore di lavoro.

L'OPI contiene delle disposizioni concrete che devono essere applicate anche alla prevenzione dei danni uditivi:

Articolo 5: Dispositivi di protezione individuale

Se i rischi d'infortunio o di menomazione della salute non possono o possono essere eliminati soltanto parzialmente mediante provvedimenti tecnici o amministrativi, il datore di lavoro deve mettere a disposizione del lavoratore dispositivi di protezione individuale (DPI) il cui uso può essere ragionevolmente preteso, come elmetti, retine per i capelli, occhiali, schermi, respiratori, auricolari, calzature, guanti, indumenti, dispositivi di protezione contro le cadute e l'affogamento, mezzi protettivi cutanei, come anche, se necessario, capi di biancheria particolari. Deve provvedere affinché essi siano sempre in perfetto stato e pronti all'uso.

Articolo 6: Informazione e istruzione dei lavoratori

- Il datore di lavoro provvede affinché tutti i lavoratori occupati nella sua azienda, compresi quelli provenienti da un'altra azienda, siano informati sui pericoli cui sono esposti nell'esercizio della loro attività e siano istruiti riguardo ai provvedimenti per prevenirli. Tale informazione e tale istruzione devono essere fornite al momento dell'entrata in servizio e ogniqualvolta subentri una modifica essenziale delle condizioni di lavoro; se necessario, esse devono essere ripetute.
- ² I lavoratori devono essere informati sui compiti e la funzione degli specialisti della sicurezza sul lavoro occupati nell'azienda.
- 3 Il datore di lavoro provvede affinché i lavoratori osservino i provvedimenti relativi alla sicurezza sul lavoro.
- 4 L'informazione e l'istruzione devono svolgersi durante il tempo di lavoro e non possono essere a carico del lavoratore.

Articolo 6a: Diritto di essere consultati

- ¹ I lavoratori o i loro rappresentanti nell'azienda hanno il diritto di essere consultati in merito a tutte le questioni relative alla sicurezza sul lavoro.
- 2 Il diritto di essere consultati comprende anche il diritto di essere sentiti sufficientemente presto e in maniera completa riguardo a tali questioni e il diritto di presentare proposte prima che il datore di lavoro prenda una decisione. Il datore di lavoro motiva la sua decisione nel caso in cui non tiene conto, o tiene conto solo in parte delle obiezioni e delle proposte dei lavoratori o dei loro rappresentanti.

Articolo 7: Trasferimento di compiti al lavoratore

- ¹ Il datore di lavoro, se affida a un lavoratore determinati compiti di sicurezza sul lavoro, deve formarlo adeguatamente, perfezionare la sua formazione e trasmettergli chiare competenze ed istruzioni. Il tempo necessario per la formazione e il perfezionamento è di principio considerato tempo di lavoro.
- 2 Il trasferimento di tali compiti al lavoratore non svincola il datore di lavoro dai suoi obblighi in materia di sicurezza sul lavoro.

Articolo 8: Provvedimenti in caso di lavori connessi con pericoli particolari

- 1 1 Il datore di lavoro può affidare lavori implicanti pericoli particolari soltanto a lavoratori adeguatamente formati al riguardo. Deve far sorvegliare ogni lavoratore che esegue da solo un lavoro pericoloso.
- ² Nel caso di lavori con pericoli particolari, il numero dei lavoratori, come anche il numero o la quantità delle installazioni, delle attrezzature di lavoro e delle materie presentanti pericoli devono essere limitati allo stretto necessario.

Articolo 9: Cooperazione di più aziende

- ¹ Se su un posto di lavoro operano lavoratori di più aziende, i rispettivi datori di lavoro devono concordare e adottare i provvedimenti necessari ai fini della tutela della sicurezza sul lavoro. Essi devono informarsi reciprocamente e informare i loro lavoratori sui pericoli e sui provvedimenti atti a prevenirli.
- 2 Il datore di lavoro deve esplicitamente avvertire un terzo riguardo alle esigenze della sicurezza sul lavoro nella sua azienda qualora gli conferisca il mandato, per tale azienda, di:
- a. pianificare, costruire, modificare o riassestare attrezzature di lavoro nonché edifici e altre costruzioni:
- b. fornire attrezzature di lavoro oppure sostanze nocive alla salute;
- c. pianificare o realizzare procedimenti di lavoro.

Articolo 10: Lavoro temporaneo

Il datore di lavoro, che occupa nella sua azienda manodopera ottenuta in prestito da un altro datore di lavoro, ha, verso di essa, gli stessi obblighi in materia di sicurezza sul lavoro che ha assunto verso i propri lavoratori.

Articolo 11

¹ Il lavoratore deve osservare le istruzioni del datore di lavoro in materia di sicurezza sul lavoro e tener conto delle norme di sicurezza generalmente riconosciute. Deve segnatamente utilizzare i DPI e non deve compromettere l'efficacia delle installazioni di protezione.

- 2 Il lavoratore, se constata anomalie compromettenti la sicurezza sul lavoro, deve immediatamente eliminarle. Se non ne è autorizzato o non può provvedervi, deve annunciare senza indugio le anomalie al datore di lavoro.
- 3 Il lavoratore non deve mettersi in uno stato che possa esporre lui stesso od altri lavoratori a pericolo. Questo divieto vale in particolare per il consumo di bevande alcoliche o di altri prodotti inebrianti.

Articolo 11a Obbligo del datore di lavoro

- Ai sensi del capoverso 2, il datore di lavoro deve fare appello a medici del lavoro e a specialisti della sicurezza sul lavoro se la protezione della salute dei lavoratori e la loro sicurezza lo esigono.
- ² L'obbligo di fare appello a specialisti della sicurezza sul lavoro dipende in particolare:
 - a. dal rischio d'infortunio e di malattie professionali, come risulta dai dati statistici a disposizione e dalle analisi di rischio;
 - b. dal numero delle persone occupate; e
- c. dalle conoscenze specifiche necessarie per garantire la sicurezza sul lavoro all'interno dell'azienda.
- 3 L'appello a specialisti della sicurezza sul lavoro non esonera il datore di lavoro dalla sua responsabilità in materia di sicurezza sul lavoro.

Articolo 11b: Direttive sull'obbligo di fare appello a specialisti della sicurezza sul lavoro

- ¹ 1 La commissione di coordinamento prevista nell'articolo 85 capoverso 2 della legge (commissione di coordinamento) emana direttive riguardo all'articolo 11a capoversi 1 e 2.
- ² Se il datore di lavoro agisce in base alle direttive menzionate al capoverso 1, si presume che ha soddisfatto il suo obbligo di fare appello a specialisti della sicurezza sul lavoro.
- 3 Il datore di lavoro può soddisfare l'obbligo di fare appello a specialisti della sicurezza sul lavoro in un modo diverso da quello previsto dalle direttive, se prova che la protezione della salute del lavoratore e della sua sicurezza sono garantite.

Nota Bene: con la Direttiva concernente l'appello ai medici del lavoro e agli altri specialisti della sicurezza sul lavoro (direttiva CFSL n. 6508) del 4 luglio 1995 è stato attuato il contenuto dell'articolo 11b capoverso 1 (entrata in vigore: 1° gennaio 1996), vedi punto 4.3.

Articolo 34: Rumore e vibrazioni

- ¹ Gli edifici e le parti di edificio devono essere sistemati in modo che il rumore o le vibrazioni non pregiudichino la salute o la sicurezza.
- ² Le attrezzature di lavoro devono essere concepite in modo che il rumore o le vibrazioni non pregiudichino la salute o la sicurezza.
- ³ I procedimenti di lavoro e di produzione devono essere concepiti e svolti in modo che il rumore o le vibrazioni non pregiudichino la salute o la sicurezza.

In base agli articoli 84 e 85 LAINF, la Suva può imporre al datore di lavoro l'applicazione di singole misure per la prevenzione degli infortuni e delle malattie professionali.

Negli articoli dal 70 all'82, l'OPI disciplina la sorveglianza sanitaria, la quale comprende anche i controlli dell'udito.

In base all'articolo 50 OPI, la Suva è responsabile dell'esecuzione delle disposizioni sulla prevenzione delle malattie professionali e quindi anche dei danni uditivi. Ciò riguarda anche le aziende non assicurate presso la Suva.

4.3 Direttiva CFSL 6508 concernente l'appello ai medici del lavoro e agli altri specialisti della sicurezza sul lavoro

Questa direttiva disciplina il ricorso delle aziende ai medici del lavoro e ad altri specialisti della sicurezza sul lavoro conformemente agli articoli 11a-11g OPI.

4.3.1 Pericoli particolari

La direttiva definisce come pericoli particolari quelli che possono essere individuati e valutati soltanto da uno specialista e con l'ausilio di particolari strumenti di analisi. Tra i pericoli particolari rientrano anche «particolari effetti fisici» come forti vibrazioni o rumore pericoloso per l'udito.

4.3.2 Individuazione dei pericoli

L'azienda deve individuare i pericoli presenti al suo interno avvalendosi delle proprie competenze settoriali e delle conoscenze di base in materia di sicurezza e tutela della salute. Un ausilio importante nella valutazione dei pericoli sono le tabelle del rumore elaborate dalla Suva per i vari settori (vedi punto 6.5). Queste tabelle non permettono tuttavia di valutare tutti i tipi di rumore presenti in ambiente industriale perché si possono riscontrare dei casi anomali, ad esempio in presenza di macchine e impianti speciali. Se un'azienda desidera effettuare un'analisi più approfondita del rumore ambientale, può prendere in prestito un fonometro presso la Suva oppure incaricare uno specialista della sicurezza sul lavoro, il quale deve tuttavia essere in grado di fornire una consulenza competente.

4.3.3 Analisi del rischio

Ai sensi della direttiva, l'analisi del rischio è l'elemento chiave per fornire la prova che l'azienda tutela la salute e la sicurezza dei lavoratori, come previsto dall'OPI. Tale analisi deve fornire indicazioni sulla probabilità di subire un infortunio sul lavoro e di contrarre una malattia professionale. Essa deve valutare il rischio individuale (per le singole persone) e il rischio collettivo, ovvero per determinati gruppi di lavoratori.

In caso di danni all'udito correlati al lavoro si può evitare di svolgere un'analisi dei rischi, in quanto esistono regole precise per l'individuazione e la valutazione dell'esposizione al rumore (vedi punto 6), valori limite e misure da adottare (vedi punto 4.7).

I collaboratori esposti devono essere informati sui pericoli e istruiti sulle misure di protezione. L'istruzione deve essere documentata (chi è stato istruito, da chi e su quale argomento). Il datore di lavoro deve fornire diversi dispositivi di protezione auricolare e controllare che siano usati regolarmente e in modo corretto. Le persone esposte a rumore devono essere messe in lista per la visita di prevenzione della

Suva. Occorre inoltre elaborare un piano delle misure per ridurre l'esposizione a rumore dei lavoratori.

4.3.4 Partecipazione dei lavoratori

I lavoratori o i loro rappresentanti devono essere ascoltati in tempo utile e in maniera completa su tutte le questioni inerenti la sicurezza sul lavoro (art. 6a OPI, vedi punto 4.2).

4.4 Prevenzione sanitaria e approvazione dei piani

Legge federale sul lavoro nell'industria, nell'artigianato e nel commercio (Legge sul lavoro) impone al datore di lavoro di tutelare i dipendenti contro i fattori che minacciano la salute (articolo 6). A completamento della LAINF, la Legge sul lavoro disciplina gli aspetti che riguardano il rumore non pericoloso per l'udito sul posto di lavoro (articolo 22, Ordinanza 3 concernente la Legge sul lavoro, OLL3). Questo argomento e i valori limite per i diversi ambienti e attività sono illustrati dettagliatamente nella guida all'OLL3.

L'Ordinanza 4 (OLL 4) disciplina l'approvazione dei piani e il permesso d'esercizio. Essa stabilisce, in linea generale, gli standard edilizi per gli edifici industriali, dalle altezze all'illuminazione, dalle vie di fuga alla temperatura ambiente. Uno degli obiettivi della procedura di approvazione è fare in modo che la riduzione del rumore sia già integrata nel progetto. La progettazione acustica di un edificio deve prevedere innanzi misure edilizie come la separazione degli ambienti di lavoro rumorosi da quelli silenziosi oppure l'installazione d'un controsoffitto fonoassorbente (vedi punto 7.5). Pertanto, esistono requisiti minimi per l'acustica ambientale che bisogna soddisfare nell'ambito dell'approvazione dei piani (coefficiente di assorbimento sonoro α_s) e per i locali pronti all'uso (tempo di riverberazione T in funzione del volume del locale, calo del livello di pressione acustica raddoppiando la distanza DL2).

In tema di Legge sul lavoro occorre ricordare anche la tutela della maternità. Nelle aziende in cui vengono eseguiti lavori pericolosi o gravosi, le donne incinte possono essere impiegate soltanto in seguito ad un'attenta valutazione dei pericoli per l'udito nel loro posto di lavoro. Ai sensi dell'articolo 62 OLL 1 e dell'Ordinanza sulla protezione della maternità, i lavori in ambiente rumoroso sono da considerare come gravosi o pericolosi. Il valore limite di livello di esposizione al rumore (L_{EX,8h}) autorizzato è pari a 85 dB(A) per giorno. Va ricordato, però, che gli effetti degli ultrasuoni e degli infrasuoni devono essere valutati separatamente.

Per quanto riguarda il lavoro notturno e a turni in ambiente rumoroso, la Legge sul lavoro stabilisce ogni quanto tempo i lavoratori devono sottoporsi a visita medica. Il rumore pericoloso per l'udito sul posto di lavoro rientra nella categoria «pericoli particolari». Il lavoro notturno è consentito soltanto se il lavoratore è stato dichiarato idoneo in seguito ad un'apposita visita e ad una consultazione medica. Egli ha inoltre diritto a visite e consultazioni periodiche.

L'esecuzione della Legge sul lavoro è di competenza degli ispettorati federali e cantonali del lavoro.

4.5 Sicurezza di prodotti

La Legge federale sulla sicurezza dei prodotti (LSPro) si applica all'immissione in commercio di prodotti a scopo commerciale o professionale. L'art. 3 descrive i requisiti di sicurezza.

Principio

Dal punto di vista della sicurezza, i prodotti devono essere conformi alle norme di buona tecnica ed essere concepiti in modo da non esporre a pericolo o da esporre soltanto a pericoli minimi la sicurezza e la salute degli utenti o di terzi durante il loro impiego normale o ragionevolmente prevedibile.

A partire da questo principio sono formulati i requisiti imposti alle macchine per le emissioni sonore (vedi punto 4.12) e le vibrazioni.

Al momento di acquistare una macchina è opportuno stabilire i valori di emissione sonora massimi consentiti. Alcuni suggerimenti per la formulazione dei requisiti (ad es. Lwa, Lpa) sono contenuti nella pubblicazione Suva 66027.d «Schallemissionsmessungen an Maschinen» (disponibile solo in tedesco e francese).

4.6 Disposizioni relative alle immissioni di rumore esterno

A livello federale, il problema delle immissioni di rumore esterno è regolato dall'Ordinanza contro l'inquinamento fonico (OIF). Essa stabilisce i valori limite di immissione e i criteri di valutazione per i seguenti tipi di rumore:

- rumore del traffico stradale
- rumore dei treni
- rumore degli aerodromi civili
- rumore dell'industria e dell'artigianato
- rumore degli impianti di tiro
- rumore degli aerodromi militari

La Direttiva sul rumore dei cantieri 2000 dell'UFAM (Ufficio federale dell'ambiente) rappresenta un caso particolare. Essa definisce le misure edilizie e aziendali per la riduzione del rumore sui cantieri ai sensi dell'articolo 6 OIF e contribuisce all'attuazione uniforme e corretta delle disposizioni sulla protezione antirumore nei cantieri.

L'esecuzione dell'Ordinanza contro l'inquinamento fonico è di competenza dei cantoni. Alcuni cantoni hanno reso ancora più severi i valori limite federali.

4.7 Valori limite per la protezione dal rumore pericoloso per l'udito

4.7.1 Suono stazionario

La Suva valuta i pericoli per l'udito causati dal rumore sul posto di lavoro secondo ISO 1999 e ne trae le necessarie misure.

Se il livello giornaliero di esposizione al rumore L_{EX} raggiunge o supera gli 85 dB(A), devono essere attuate misure M1 (vedi punto 4.7.3) a tutela del personale.

Se, invece, il livello di esposizione al rumore L_{EX} riferito al periodo di un anno raggiunge o supera gli 85 dB(A), è necessario attuare le più severe misure M2. I lavoratori esposti hanno diritto all'esame audiometrico a bordo dell'audiomobile.

Se, infine, il livello di esposizione al rumore L_{EX} riferito al periodo di un anno raggiunge o supera gli 88 dB(A), la visita audiometrica a bordo dell'audiomobile è obbligatoria (vedi figura 89, pagina 76).

4.7.2 Suono a impulsi

Se il livello di picco di pressione sonora (peak) supera i 135 dB(C), è necessario eseguire una valutazione del rischio basata sul livello di esposizione sonora $L_{\rm E}$ in dB(A) accumulato in un ora.

Se il livello di esposizione sonora L_E è inferiore a 120 dB(A), vanno attuate le misure M1 (vedi punto 4.7.3) a tutela del personale.

Se, invece, il livello di esposizione sonora L_E è compreso fra 120 e 125 dB(A), è necessario introdurre le più severe misure M2. I lavoratori esposti hanno diritto all'esame audiometrico a bordo dell'audiomobile (vedi figura 90, pagina 77).

Se, infine, il livello di esposizione sonora L_E raggiunge o supera i 125 dB(A), la visita audiometrica a bordo dell'audiomobile è obbligatoria.

4.7.3 Misure per la protezione dell'udito In seguito sono elencate le misure da attuare in base al tipo di esposizione al rumore sul posto di lavoro.

Misure M1:

- sondare le possibilità per combattere il rumore in base alla lista di controllo 67009;
- informare i lavoratori sui pericoli legati al rumore e sulle conseguenze di un danno uditivo:
- istruire i dipendenti sulle necessarie misure di protezione e sulla loro applicazione;
- distribuire gratuitamente dei dispositivi di protezione auricolare adeguati;
- consigliare di portare i dispositivi di protezione auricolare durante i lavori particolarmente rumorosi;
- non impiegare collaboratrici in gravidanza.

Misure M2, in aggiunta alle misure M1:

- adottare dei provvedimenti per combattere il rumore:
- contrassegnare i posti di lavoro, le apparecchiature e le zone rumorose con il segnale «protezioni auricolari obbligatorie»;
- fare in modo che tutti portino sempre le protezioni auricolari durante i lavori rumorosi.

4.8 Valori di riferimento per il rumore fastidioso sul posto di lavoro

4.8.1 Valori di riferimento per attività

Nella guida all'Ordinanza 3 concernente la Legge sul lavoro sono riportati dei valori di riferimento (vedi tabella 9) per tre diversi gruppi di attività:

Gruppo 1: lavori di ruotine prevalentemente manuali che richiedono brevi o minimi sforzi di concentrazione. Esempi: lavori con macchine da lavorazione e produzione, attrezzi e apparecchiature, lavori di manutenzione ecc.

Gruppo 2: attività intellettuali ripetitive che richiedono – di tanto in tanto oppure costantemente – una forte concentrazione Esempi: coordinare, raccogliere dati, lavorare al computer, vendere, svolgere mansioni in un ufficio amministrativo o di un'officina.

Gruppo 3: lavori che richiedono costantemente una forte concentrazione e si basano soprattutto sul pensiero produttivo.

Esempi: lavori scientifici, sviluppo di programmi, attività di progettazione, traduzione, lavoro in cabina di ricezione ecc.

4.8.2 Valori limite per i rumori di fondo negli ambienti di lavoro

Nella guida all'Ordinanza 3 concernente la Legge sul lavoro sono indicati dei valori di riferimento anche per i rumori di fondo consentiti (tabella 10). Si definiscono rumori di fondo (rumori estranei) le emissioni di rumore provenienti da installazioni tecniche interne (ad esempio gli impianti tecnici di un edificio come il sistema di ventilazione, il compressore d'aria, il riscaldamento) e le emissioni di rumore provenienti dall'ambiente esterno (rumore industriale, rumore dei veicoli che circolano entro l'area aziendale).

4.9 Altri criteri di valutazione del rumore

4.9.1 Ultrasuoni

Oggi è noto che gli ultrasuoni (campo di frequenze fra 20 kHz e 100 kHz) non provocano danni se il livello massimo non supera i 140 dB e il livello medio riferito ad un periodo di 8 ore al giorno si mantiene al di sotto dei 110 dB.

		Livello d'esposizione al rumore L _{EX} in dB(A)		
		Esigenze normali	Esigenze elevate	
Gruppo 1 Attività industriali e artig	jianali	< 85	≤ 75	
Gruppo 2 Lavoro d'ufficio e attività paragonabili in produzione e controllo		≤ 65	≤ 55	
Gruppo 3 Attività prevalentemente intellettuali che richiedono un'elevata concentrazione		≤ 50	≤ 40	
Esigenze normali:	valori di riferimento a cui attenersi nella maggior parte dei casi d'applicazione.			
Esigenze elevate:	valori di riferimento per la riduzione del rumore. Essi si applicano anche alle attività che richiedono elevate prestazioni, alta qualità e particolare concentrazione.			
Tabella 9: valori di riferiment dell'Ordinanza 3 concernen	to per il rumore fastidioso sul pe te la Legge sul lavoro.	osto di lavoro a seconda d	el tipo di attività, ai sensi	

4.9.2 Infrasuoni

Oggi è noto che gli infrasuoni (campo di frequenze fra 2 Hz e 20 Hz) non provocano danni se, in un periodo di 8 ore al giorno, il livello medio non supera i 135 dB e il livello massimo si mantiene al di sotto dei 150 dB. Il benessere della persona può essere compromesso se il livello medio supera i 120 dB.

4.10 Ordinanza sugli stimoli sonori ed i raggi laser

L'Ordinanza concernente la protezione del pubblico delle manifestazioni dagli effetti nocivi degli stimoli sonori e dei raggi laser (Ordinanza sugli stimoli sonori e i raggi laser) è entrata in vigore il 1° aprile 1996. Originariamente i valori limite erano fissati a 93 dB(A) oppure, previa autorizzazione dell'autorità competente, a 100 dB(A).

Con la revisione del 2007, l'obbligo di richiedere l'autorizzazione è stato sostituito dall'obbligo di notifica per l'organizzatore della manifestazione. A seconda della pericolosità per l'udito, le manifestazioni vengono distinte in tre tipi:

- fino a 93 dB(A) per un periodo di tempo indeterminato
- fino a 96 dB(A) per un periodo di tempo indeterminato oppure fino a 100 dB(A) per un periodo massimo di 3 ore
- fino a 100 dB(A) per un periodo superiore a 3 ore

Per le manifestazioni fino a 93 dB(A) di durata indeterminata non è necessario adottare particolari misure. Negli altri due casi bisogna adottare misure graduate a seconda del rischio (informazione, distribuzione di protettori auricolari, misurazione o registrazione del livello sonoro, eventuale creazione di zone con un livello sonoro più basso).

Per la valutazione, si fa riferimento al livello sonoro continuo misurato ogni ora nel punto di maggiore intensità sonora dell'area destinata al pubblico. Se si esegue la misurazione in un altro punto, ad esempio in prossimità

Ambiente	Livello d'esposizione
	al rumore L _{EX} in dB(A
Piccolo ufficio (fino a tre persone)	40
Ufficio di medie dimensioni	40
Sala riunioni e sala conferenze	40
Ufficio a pianta aperta	45
Ufficio con diverse apparecchiature	45
Sala computer	50
Ufficio di officina	60
Sala controllo	60
Cabina di comando	70
Laboratorio	50
Locali pausa e settori d'attesa	60
Locali di riposo e infermerie	40
Mensa	55
Sala operatoria	40
Aule scolastiche	40
Appartamento di servizio	
(nelle ore notturne)	35
Tabella 10: valori di riferimento per i rumori di fondi	do.

della console, occorre prima calcolare la differenza di livello tra il punto di maggiore intensità sonora e il punto di misurazione. A tale scopo è fondamentale utilizzare un rumore di prova affidabile e considerare un margine di sicurezza.

L'Ordinanza sugli stimoli sonori ed i raggi laser disciplina soltanto la protezione del pubblico di manifestazioni ed eventi. A seconda delle situazioni, possono imporsi delle restrizioni per tutelare i residenti dalle emissioni di rumore e garantire la quiete notturna. Nei locali musicali e nelle manifestazioni in cui sono impiegati lavoratori ai sensi della LAINF, si applicano i valori limite di rumore elencati al punto 4.7.

Altre informazioni su questa ordinanza sono disponibili alla pagina internet: www.suva.ch/rumore.

4.11 Norma SIA 181, Protezione dal rumore nelle costruzioni

La norma SIA 181 «Protezione dal rumore nelle costruzioni» è uscita nel 2006 in una versione completamente rielaborata che ha sostituito quella del 1988. Questa norma definisce i requisiti acustici delle strutture edilizie, ad esempio l'isolamento acustico aereo e l'isolamento anticalpestio delle pareti divisorie e delle controsoffittature, l'isolamento acustico aereo delle facciate, i rumori degli impianti tecnici interni ecc. Particolare rilevanza è data ai metodi di calcolo, misurazione e valutazione normati a livello internazionale. La versione aggiornata della norma contempla anche l'acustica architettonica delle aule scolastiche e delle palestre.

4.12 Dichiarazione del rumore secondo la Direttiva macchine europea

Per abbattere le barriere commerciali all'interno dello spazio economico europeo, il Consiglio della comunità europea emette delle direttive (CE) che vengono poi ratificate dagli stati membri e integrate nel diritto nazionale. Anche la Svizzera ha integrato nella legislazione federale alcune direttive CE che riguardano lo scambio internazionale di prodotti, fra cui la direttiva macchine 2006/42/CE, brevemente illustrata qui di seguito.

Secondo queste direttive, le macchine devono essere progettate e fabbricate in modo da ridurre il più possibile i pericoli derivanti dalle emissioni di rumore. A tale scopo, il costruttore deve adeguarsi al progresso tecnologico e impiegare tutti i mezzi disponibili per ridurre il rumore. La lotta al rumore deve quindi cominciare alla fonte.

Il fornitore di una macchina deve dichiarare i valori di emissione sonora con un'indicazione applicata sulla macchina stessa, nelle istruzioni per l'uso e nelle pubblicazioni promozionali che descrivono le caratteristiche delle prestazioni della macchina 2006/42/CE (punto 1.7.4.2, paragrafo u e punto 1.7.4.3). La tabella 11 mostra quali valori di emissione sonora devono essere indicati.

Se l'ubicazione del posto di lavoro alla macchina non è chiaramente definita, si può indicare il livello di pressione sonora emessa ad un metro di distanza dalla a superficie della macchina.

Se, sul posto di lavoro, il valore istantaneo massimo del livello di pressione sonora ponderato C supera i 130 dB, occorre indicare anche questo valore di emissione.

L'obbligo di dichiarazione per le macchine mobili (veicoli) è solitamente disciplinato da altre direttive, fra cui quelle relative alle macchine da cantiere e ai carrelli elevatori.

4.13 Misure di protezione dell'udito secondo la Direttiva europea sul rumore

Per la protezione dell'udito è determinante la Direttiva 2003/10/CE del Consiglio dell'Unione Europea del 6 febbraio 2003 (Direttiva europea sul rumore). Nell'UE essa è entrata in vigore il 15 febbraio 2006.

I valori di azione e i valori limite di esposizioni stabiliti dalla Direttiva europea sul rumore sono riportati nella tabella 12. Essi sono solitamente riferiti ad un periodo di esposizione giornaliera di 8 ore L_{EX,8h}. Se il periodo di esposizione varia da un giorno all'altro, è consentito effettuare il calcolo del livello di esposizione sonora su base settimanale.

Le misure stabilite dalla Direttiva europea sul rumore sono elencate nella tabella 13.

L_{pA}	Valore di emissione da indicare
≤ 70 dB(A)	Livello di pressione sonora emessa sul posto di lavoro: $L_{pA} < 70~\text{dB}$ oppure $L_{pA} = \dots~\text{dB}$
> 70 dB(A)	Livello di pressione sonora emessa sul posto di lavoro: $L_{pA}=\dotsdB$
> 80 dB(A)	Livello di pressione sonora emessa sul posto di lavoro: $L_{pA}=\dots$ dB Livello di potenza sonora: $L_{WA}=\dots$ dB
Tabella 11: dichiarazione	e del rumore ai sensi della Direttiva macchine 2006/42/EG (in vigore dal 29 dicembre 2009).

Valori di azione e valori limiti di esposizione	Dir. 2003/10/CE
Valori di azione minimi	$L_{EX,8h} = 80 \text{ dB(A) o}$ $L_{peak} = 135 \text{ dB(C)}$
Valori di azione massimii	$L_{EX,8h} = 85 \text{ dB(A) o}$ $L_{peak} = 137 \text{ dB(C)}$
Valori limite di esposizione tenuto conto dell'effetto isolante dei dispositivi individuali di protezione auricolare	L _{EX,8h} = 87 dB(A) o L _{peak} = 140 dB(C)
Tabella 12: valori di azione e valori limite di esposizione sonora secon	do la Direttiva europea sul rumore.

Misura	Valore minimo di azione	Valore massimo di azione
Obbligo di informazione e istruzione	X	X
Obbligo del datore di lavoro di mettere a disposizione dispositivi di protezione auricolare	X	X
Diritto alla visita audiometrica di prevenzione se la valutazione e la misurazione sono indice di rischio per la salute	X	X
Diritto all'esame dell'udito effettuato dal medico o sotto la responsabilità del medico		X
Obbligo di portare le protezioni auricolari		X
Programma di riduzione del rumore		X
Indicazione delle zone rumorose, indicazione delle zone in cui il valore massimo di azione può essere superato		X
Carta sanitaria se la valutazione e la misurazione rivelano		
un pericolo particolarmente elevato	(x)	(x)
Tabella 13: misure da attuare secondo la direttiva europea sul rumore.		

La Svizzera non ha ratificato la Direttiva europea sul rumore. Tuttavia, i valori limite di rumore sul posto di lavoro entrati in vigore il 1° gennaio 2007 non si discostano particolarmente da quelli della direttiva 2003/10/CE.

5 Fonometria

5.1 Obiettivo della misurazione fonometrica del rumore

Le misurazioni del rumore hanno l'obiettivo di rilevare oggettivamente la situazione acustica di un ambiente. I risultati devono essere riproducibili indipendentemente dal fonometro utilizzato e dalla persona che effettua la misurazione. Per questo motivo le caratteristiche dei fonometri e i metodi di misurazione sono stati definiti in norme internazionali.

Le misurazioni delle immissioni sonore

rilevano l'effetto del rumore in un determinato ambiente oppure su di una persona. Esse sono dunque riferite al ricevente (fig. 45). In una misurazione di questo tipo l'orecchio è sostituito da un microfono. Le funzioni dell'apparato uditivo, in particolare la discriminazione delle frequenze e dell'andamento temporale, vengono riprodotte con mezzi tecnici. La pericolosità di un rumore dipende dall'energia sonora. Il fattore decisivo è quindi il valore di livello sonoro rappresentativo dell'energia generata nell'intero periodo di esposizione al rumore, ovvero il livello sonoro equivalente Leg.

Le misurazioni delle emissioni sonore

sono riferite alla sorgente. Esse vengono eseguite, ad esempio, per rilevare la potenza sonora generata da una sorgente ai fini della dichiarazione del rumore. Le misurazioni riferite alla sorgente – spesso combinate con un'analisi delle frequenze – sono alla base delle misure tecniche di riduzione del rumore.

5.2 Componenti dei fonometri

In seguito verranno illustrate le componenti principali degli strumenti di misurazione acustica (fonometri) sull'esempio del fonometro integratore (figura 46).

La reazione del microfono di misura è ampiamente indipendente dalla direzione. Questo dispositivo genera una tensione elettrica proporzionale alla pressione sonora. Comunemente, si utilizzano dei microfoni a condensatore con un diametro di 1/2 pollice (12,7 mm), una sensibilità di 50 mV/Pa e una risposta in frequenza (in campo libero con incidenza sonora frontale) fino a 10 o 20 kHz. I microfoni condensatori possono essere prepolarizzati (microfoni electret) oppure con tensione di polarizzazione esterna uguale a 200 Volt. Per speciali applicazioni (livelli superiori, maggiori frequenze) si utilizzano microfoni meno sensibili oppure più piccoli. I dati tipici dei comuni microfoni di misura sono riportati nella tabella 14.

Nella rappresentazione semplificata del fonometro, al microfono segue direttamente il convertitore di impedenza («preamplificatore»). Dopo il preamplificatore può essere inserito un cavo di prolunga.

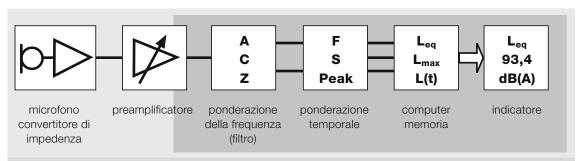


Figura 46: struttura semplificata di un fonometro integratore. I fonometri di nuova generazione sono spesso in grado di applicare simultaneamente diversi filtri di frequenza e diverse ponderazioni temporali. Oggi le funzioni a sfondo grigio sono solitamente realizzate con la tecnologia digitale.

Diametro		¹ / ₂ pollice	¹ / ₂ pollice	¹ / ₄ pollice	1/ ₄ pollice	½pollice
Equalizzazione		Campo	Campo	Campo F	ressione	Pressione
(campo libero, pressione/diffuso)		libero	libero	libero		
Sensibilità	[mV/Pa]	50	12-14	4,0	1,4	1,0
Max. L _{peak} solo microfono	[dB]	146	160	164	172	168
Max. L _{peak} con fonometro	[dB]	140	152	162	172	174 ¹⁾
Rumore di fondo	[dB(A)]	15	24	39	47	56
Risposta in frequenza fino a max.	[kHz]	202)	40	70	100	140

Tabella 14: microfoni di misura.

²⁾ Per i microfoni di alta qualità; secondo CEI 61672 è necessaria soltanto una risposta in frequenza fino a 12 500 (classe 1) o 8000 Hz (classe 2).

f	[Hz]	31,5	63	125	250	500	1'000	2'000	4'000	8'000	16'000
Α	[dB]	-39,4	-26,2	- 16,1	-8,6	-3,2	0	+ 1,2	+ 1,0	- 1,1	- 6,6
С	[dB]	3,0	-0,8	-0,2	0	0	0	-0,2	-0,8	-3,0	- 8,5
_									_		

Tabella 15: coefficienti di smorzamento dei filtri di ponderazione A e C a diverse frequenze f.

I filtri di ponderazione A e C (vedi punto 2.7) e il filtro B (ormai in disuso) sono approssimazioni di «curve di isosensazione» per diversi livelli. Oggi si applica soprattutto il filtro A poiché è quello che meglio corrisponde alla trasmissione sonora effettuata dall'udito. Il filtro C viene invece applicato al rumore impulsivo o a bassa frequenza. I coefficienti di smorzamento delle ponderazioni A e C alle varie frequenze sono indicati nella tabella 15. Il grafico della figura 11 permette di ricavare i coefficienti relativi ad ulteriori frequenze.

Nel risultato di una misurazione deve comunque sempre essere indicato il filtro di ponderazione applicato, ad esempio nel seguente modo: $L = x dB(A) o L_A = x dB$.

¹⁾ Distorsioni del microfono > 3%

Denominazione	Abbreviazione		Raddrizzatore ¹⁾	Costante di tempo	Ritorno
Lento	Slow	S	Valore efficace / RMS	1 s ²⁾	1 s ²⁾
Veloce	Fast	F	Valore efficace / RMS	125 ms ²⁾	125 ms ²⁾
Impulso	Impulse	1	Valore efficace / RMS	35 ms ²⁾	3 s
Picco	Peak (hold)3)	Р	Valore di picco / Peak	10-50 μ s	2 s ³⁾

Tabella 16: costanti temporali in fonometria.

La **ponderazione temporale** o costante di tempo determina la reazione dell'indicatore alle variazioni di livello. A tale proposito si parla di un messaggio scorrevole che «dimentica» via via i segnali acustici precedenti. Le costanti temporali normalizzate sono elencate nella tabella 16.

La costante temporale «slow» smorza le oscillazioni di livello facilitando la lettura dei valori, mentre l'indicatore in posizione «fast» mostra le oscillazioni del segnale (fig. 47). La costante di tempo «impulse» (disponibile solo opzionalmente e non utilizzata in Svizzera) è ancora più breve ed è stata creata per riprodurre la percezione dell'intensità sonora (tuttavia, secondo le conoscenze attuali, ciò si ottiene più facilmente con «fast»). Essa rallenta fortemente il ritorno dell'indicatore. Nella misurazione di un segnale oscillante, questa ponderazione fornisce valori superiori rispetto a «fast» o «slow».

Per misurare i picchi di pressione sonora è stata introdotta la ponderazione temporale «peak». Essa ha un tempo di incremento estremamente breve, dell'ordine dei microsecondi.

Con un segnale sinusoidale costante (tono di calibrazione) «slow», «fast» e «impulse» producono lo stesso risultato. La costante «peak», invece, produce un livello di circa 3 dB più alto, il che corrisponde al rapporto tra il valore di picco e il valore effettivo.

Con le misurazioni del rumore negli ambienti di lavoro non si valuta tanto l'andamento temporale del livello sonoro «fast» o «slow» quanto, piuttosto, il suo valore massimo e minimo.

Gli impulsi sonori brevi generano livelli massimi completamente diversi a seconda della ponderazione temporale (ovvero del tempo di incremento), come mostra la tabella 17 sull' esempio di un colpo di fucile. In questi casi, l'indicazione del livello sonoro non ha alcun valore se non è specificata la ponderazione temporale applicata.

Livello massimo peak	154 dB(A)
Livello massimo im-pulse	136 dB(A)
Livello massimo fast	130 dB(A)
Livello massimo slow	121 dB(A)

Tabella 17: percezione di un colpo di fucile da parte dell' orecchio più esposto del tiratore (fucile d'assalto 90).

A seconda del tipo di fonometro, la **lettura numerica** interessa uno spettro che va dai 20 fino a 100 dB (fonometri digitali). I display a cristalli liquidi (i più usati) permettono solitamente di visualizzare simultaneamente il livello medio (visualizzazione numerica), il livello istantaneo (grafico a barre o colonne), il livello massimo e altri dati ancora.

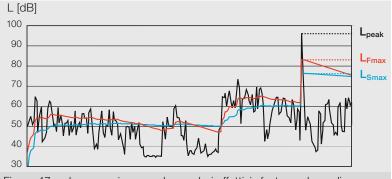


Figura 47: valore massimo «peak» e valori effettivi «fast» e «slow» di un segnale acustico.

¹⁾ Valore efficace = valore quadratico medio = valore RMS («root mean square»).

²⁾ Queste costanti di tempo valgono per la tensione di segnale al quadrato.

³⁾ Oppure nessun ritorno: l'indicatore si mantiene all'estremo dell'oscillazione.

Le **interfaccia** digitali e analogiche permettono di trasmettere i dati ad una stampante o al PC, di visualizzarli su uno schermo TV o su un monitor oppure di attivare i comandi del fonometro tramite computer.

In questo caso, il **computer** raccoglie e memorizza tutti i valori misurati, invia i comandi al fonometro e ne controlla il funzionamento. Anche l'elaborazione del segnale (ad esempio la ponderazione delle frequenze e la ponderazione temporale) avviene sempre più spesso tramite processori di segnale digitali.

5.3 Dispositivi per la misurazione e l'analisi del rumore sul posto di lavoro

Lo strumento più importante per le misurazioni generali del rumore è il **fonometro**. I modelli più semplici (fig. 48) hanno un costo a partire da 50 franchi (!); tuttavia essi non sono conformi alle norme e sono utili soltanto per eseguire delle misure orientative.

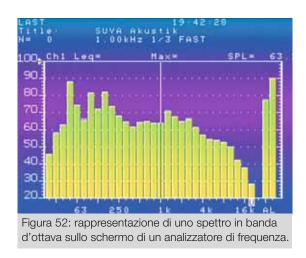
Il prezzo di un fonometro professionale (classe 2 secondo EN 61672) si aggira attorno ai 1000 franchi se si sceglie un modello semplice e attorno ai 2000 franchi se si opta per un fonometro integratore. Gli strumenti di precisione (classe 1) con varie modalità di acquisizione dati e diverse interfaccia possono costare fino a 10 000 franchi.

Figura 49: fonometro integratore economico.

Una lista aggiornata dei fornitori di strumenti per la misura del suono è disponibile sul sito della Suva alla pagina www.suva.ch/rumore.

Gli strumenti ideali per misurare le emissioni di rumore sul posto di lavoro sono i **fonometri integratori** (fig. 49). Esistono anche modelli più economici non omologati a livello internazionale ma comunque in grado di fornire buoni risultati.

I fonometri integratori professionali (fig. 50) rilevano contemporaneamente il livello di picco, il livello massimo «fast» e il L_{ea} ; spesso sono


addirittura in grado di applicare parallelamente diversi filtri di ponderazione (A e C oppure lineare) o di eseguire l'analisi delle frequenze.

I dosimetri di rumore sono dei fonometri integratori in formato tascabile con diverse modalità di memorizzazione dati (ad esempio $L_{\rm eq}$ al minuto) e sono dotati di un microfono collegato ad un cavo flessibile che può essere posizionato sulla spalla o sul casco del portatore (fig. 51). Sono particolarmente adatti per rilevare gli effetti del rumore nei posti di lavoro mobili e per le misurazioni di lunga durata. I requisiti di conformità per i dosimetri di rumore sono definiti nella norma EN 61252.

I modelli di ultima generazione sono in grado di rilevare in un unico campo di misura livelli da circa 40 fino a oltre 140 dB. Spesso registrano anche quante volte e per quanto tempo un livello predefinito è stato superato e se l'apparecchio è stato sovramodulato durante la misurazione.

Gli analizzatori paralleli analizzano contemporaneamente il segnale acustico in diverse bande di ottava e terzi di banda d'ottava (vedi punto 2.10). Essi visualizzano il livello istantaneo, massimo e medio per ogni banda di frequenza e sono in grado di memorizzare gli spettri. Solitamente permettono inoltre di calcolare anche lo spettro differenza. L'analisi

delle frequenze viene visualizzata su un display a cristalli liquidi incorporato oppure su un monitor esterno (fig. 52).

Gli analizzatori paralleli sono dotati di interfaccia digitali che permettono di trasferire i risultati sul computer, dove vengono elaborati.

Sempre più spesso i fonometri di valore sono dotati di una funzione che permette di eseguire l'analisi in banda d'ottava o in terzi d'ottava, per lo meno come opzione extra (fig. 50).

Gli analizzatori a banda stretta visualizzano lo spettro su una scala di frequenze lineare ad ampiezza di banda costante. Essi trovano applicazione soprattutto nelle attività volte a ridurre il rumore degli impianti tecnici e servono, in particolare, a individuare i rapporti tra i processi meccanici ed elettrici delle macchine e la propagazione acustica.

Le sorgenti monofoniche (pistonofono, calibratore acustico) vengono posizionate direttamente sul microfono e generano una pressione sonora definita. Essi permettono di controllare ed eventualmente correggere la sensibilità del fonometro o dell'intera catena di misura. Bisogna osservare che, oggi, i fonometri ad alta precisione hanno una costanza di livello altrettanto buona di quella dei calibratori. I calibratori regolati con microfono di riferimento incorporato hanno tuttavia il vantaggio di essere più stabili.

Per le sorgenti di calibrazione con un segnale da 1 kHz non sono necessarie correzioni di livello nemmeno se il filtro di ponderazione è attivo (vedi tabella 15).

Per registrare l'andamento temporale del livello sonoro, sia nel breve che nel lungo periodo (ad esempio durante una misurazione del tempo di riverberazione oppure nel corso di 24 ore) si usavano, in precedenza, dei registratori di livello sonoro. Oggi, per lo più, la registrazione è eseguita direttamente dal fonometro oppure da un software di valutazione installato sul PC (fig. 53).

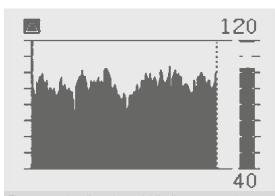


Figura 53: visualizzazione del livello sonoro nel tempo effettuata da un fonometro (orizzontale: tempo, verticale: livello).

Per registrare i segnali acustici sono adatti sia i registratori digitali portatili con hard disk, sia le carte di memoria come quelle delle fotocamere digitali Compact Flash, sia i minidisc (fig. 54). Questo metodo di registrazione offre diversi vantaggi, quali una risposta in frequenza «lineare» fino a 20 kHz (ad una frequenza di campionamento di 48 kHz), un migliore rapporto segnale-disturbo (ad esempio 85 dB con una risoluzione di 16 bit) e, a seconda della capacità di memoria, una maggiore durata di registrazione. La qualità della riproduzione dipende soprattutto dallo standard di registrazione. Con un uso accorto, anche degli apparecchi non professionali possono dare dei buoni risultati. Per l'analisi dei dati, il file viene trasferito sul PC oppure su un analizzatore. Studi sperimentali hanno dimostrato che una riduzione dati moderata come quella operata dai sistemi mini disc (ATRAC) non sfalsa i

risultati delle misure, nemmeno in corrispondenza del valore di picco, dal momento che soltanto i segnali «inudibili» vengono soppressi dai livelli più bassi. Le registrazioni con una forte riduzione dei dati, come nel formato MP3, possono essere utilizzati per la documentazione o identificazione di segnali acustici ma non per la loro analisi.

Figura 54: registratore digitale a 2 canali con scheda CF 2 (Wave, fino a 24 bit / 96 kHz).

Figura 55: registratore digitale a 4 canali.

Modalità di registrazione integrata

Per consentire l'identificazione, la documentazione e l'analisi di laboratorio degli eventi acustici, i fonometri di ultima generazione sono in grado di registrare direttamente il segnale, sia in modo indiscriminato che in modo selettivo, ad esempio soltanto se il livello sonoro supera un determinato valore. I dati vengono memorizzati senza compressione (wav, PCM) oppure in forma ridotta (formato mp3, wma, ecc.) su una scheda di memoria interna. In seguito possono poi essere prelevati attraverso un'uscita USB.

I sistemi di registrazione su disco rigido basati sul PC permettono di eliminare, ripetere o modificare degli estratti selezionati e sono quindi particolarmente utili per eseguire analisi speciali. La visualizzazione dell'andamento del segnale sul monitor – simile a quella di un oscilloscopio – ne facilita la valutazione (fig. 56).

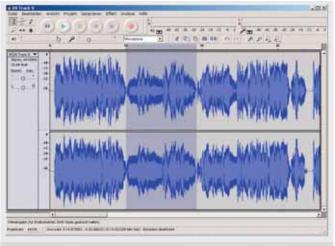


Figura 56: visualizzazione sul monitor di un sistema di registrazione su disco rigido.

I convertitori avanzati permettono di digitalizzare un suono ad una frequenza di campionamento di a 96 kHz e una profondità di 24 bit, ottenendo una risposta in frequenza di 40 kHz e un rapporto segnale-disturbo di 115 dB. Per registrare in qualità CD (44 kHz, 16 bit) sono necessari circa 5 magabyte di memoria al minuto e per canale. I supporti di maggiore qualità richiedono uno spazio di memoria sempre maggiore (ad esempio 96 kHz, 24 bit).

5.4 Consigli pratici per le misurazioni fonometriche

Prima di eseguire una misurazione fonometrica è opportuno rispondere alle seguenti domande:

- Qual è lo scopo della misurazione? Quali dati si intende raccogliere? Come e in rapporto a quali criteri devono essere valutati? Quali norme devono essere applicate?
- A che livello si colloca la misurazione? Si tratta di una perizia, di un controllo o di una

- semplice stima? È sufficiente un'istantanea della situazione oppure il risultato deve avere rilevanza statistica?
- Quali eventi acustici si prevedono (spettro di pressione sonora, campo di frequenze, andamento temporale)?
- Il fonometro viene effettivamente utilizzato entro il campo d'applicazione definito nei dati tecnici?
- Di quali interferenze occorre tenere conto (vento, riflessioni acustiche, altre sorgenti di rumore, temperature estreme).

Prima di eseguire la misurazione, occorre controllare tutti i dispositivi, le impostazioni e soprattutto lo stato delle batterie. A tale scopo sono da preferire i calibratori acustici, dal momento che, al contrario dei segnali elettrici di riferimento, permettono di controllare l'intera catena di misurazione, compreso il microfono.

Nel corso della misurazione occorre prestare attenzione a quanto segue:

- Un frangivento in spugna porosa protegge il microfono dal vento, dalla pioggia e dalla polvere.
- Gli scuotimenti non creano alcun problema se il microfono è sorretto a mano. Se invece il microfono o il fonometro sono sostenuti da un cavalletto, può verificarsi uno sfalsamento dei risultati alle basse frequenze.
- Se si effettuano delle misurazioni riferite ad una persona, il microfono deve essere posizionato in prossimità delle orecchie. Tuttavia, non deve essere a né a contatto con la testa né troppo vicino a degli oggetti, altrimenti si rischia un aumento di livello dovuto alle riflessioni acustiche.
- Affinché le riflessioni causate dal corpo della persona non creino troppe interferenze, il microfono deve trovarsi almeno ad un braccio di distanza.
- È fondamentale evitare qualsiasi sovraccarico («overload»), anche se di breve durata.

Differenza di livello dB(C) – dB(A)	36,4	25,4	15,9	8,6	3,2	dB
Componente frequenziale dominante	31,5	63	125	250	500	Hz
Tabella 18: differenza tra i livelli dB(C) – dB(A) come funzione della frequenza.						

Con i segnali di frequenza compresa tra 10 kHz e 20 kHz (ad esempio le frequenze subarmoniche emesse dagli apparecchi a ultrasuoni), anche i fonometri di classe 1 possono fornire risultati molto diversi a causa delle elevate tolleranze. In questi casi è importante che la risposta in frequenza del microfono utilizzato non sia inferiore a 20 kHz o sia per lo meno nota con esattezza (si veda anche la pubblicazione Suva 66077 «Bruits des installations à ultrasons», non disponibile in italiano).

Effettuando la differenza tra la ponderazione C e la ponderazione A è possibile farsi un'idea della quantità di basse frequenze anche senza eseguire un'analisi frequenziale: maggiore è la differenza, maggiore è la quota di basse frequenze. Se è si manifesta un ronzio dominante (tono puro), è addirittura possibile risalire approssimativamente alla sua frequenza (vedi fig. 11 al punto 2.7 e la tabella 18).

Se non si dispone di un fonometro integratore, è possibile stimare il L_{eq} in base al campo di variazione del livello istantaneo «slow»: se il campo di variazione è compreso fra 0 e 5 dB, il L_{eq} si trova circa a metà fra il valore minimo e il valore massimo. Se, invece, varia dai 5 ai 10 dB, il L_{eq} è inferiore al valore massimo di circa un terzo del campo di variazione. Se, infine, quest'ultimo è superiore a 10 dB, è indispensabile utilizzare un fonometro integratore.

La misurazione deve coprire un periodo di tempo rappresentativo, quindi almeno un ciclo di lavoro.

La lettura digitale dei fonometri moderni può indurre a sopravvalutare la riproducibilità delle misurazioni acustiche. Anche se gli strumenti di misurazione hanno raggiunto un elevato livello di precisione, il punto di misurazione scelto, lo stato di funzionamento della macchina e il tipo di pezzo in lavorazione possono influire in misura significativa sul risultato. In generale, è preferibile esprimere i valori di livello sonoro in numeri interi (dB), tranne che per i risultati intermedi. In questo modo si evitano errori di arrotondamento nell'elaborazione dei dati.

Il **protocollo** di una misurazione acustica deve riportare le principali condizioni quadro e i dati più importanti:

- luogo, data, ora della misurazione, obiettivo, norme applicate
- foto, schizzo o descrizione del luogo, acustica architettonica, posizione del microfono, altezza del microfono rispetto al terreno
- identificazione, dati tecnici, stato di funzionamento (a vuoto, a carico) della sorgente o delle sorgenti di rumore
- fonometro utilizzato, impostazioni (livello, filtro, costante di tempo), durata della misurazione o unità di tempo per il calcolo del valore medio
- risultati della misurazione: campo di variazione del livello istantaneo, livello medio
- risultati del sondaggio: tempo di utilizzo delle macchine, durata dei diversi stati di funzionamento e delle diverse attività, periodo di esposizione
- note e integrazioni

Il protocollo garantisce che le misurazioni siano riproducibili.

5.5 Le misurazioni acustiche della Suva

Per le misurazioni del rumore nei posti di lavoro, gli esperti della Suva impiegano dei fonometri integratori ad alta precisione, i quali visualizzano contemporaneamente lo spettro del livello sonoro nella posizione «fast» e il livello sonoro continuo.

Per le misurazioni nei posti di lavoro mobili e sul lungo periodo vengono utilizzati dei dosimetri di rumore.

Se sono necessari dei dati dettagliati, ad esempio per pianificare delle misure antirumore, si effettuano delle registrazioni direttamente con il fonometro oppure con un registratore digitale e le si analizzano in laboratorio.

Per la misurazione degli ultrasuoni, degli infrasuoni e delle detonazioni sono disponibili dei microfoni e fonometri speciali. Per misurare le emissioni di sorgenti sonore in prossimità dell'orecchio, come cuffie auricolari, ricetrasmittenti portatili, ricevitori telefonici, cuffie antirumore attive ecc., si impiegano invece dei connettori acustici o delle teste artificiali (Head and Torso Simulator HATS).

Una volta concluse le misurazioni, l'azienda riceve il relativo protocollo. Esso contiene informazioni riguardo all'obiettivo delle misurazioni, ai fonometri utilizzati, alle modalità di raccolta dei dati e ai valori limite applicati dalla Suva.

Se le misurazioni riguardano in primo luogo le immissioni sonore, il protocollo riporta una tabella del rumore individuale (vedi punto 6.4), nella quale sono elencati i livelli di rumore, i periodi di esposizione e le misure necessarie.

Se l'oggetto delle misurazioni sono le emissioni di rumore e l'obiettivo è definire le potenziali misure per ridurne gli effetti, il protocollo contiene ulteriori informazioni, ad esempio un'analisi delle frequenze, una planimetria o uno schizzo che descrive la collocazione delle sorgenti sonore ed eventualmente i valori di livello dei singoli punti di misurazione.

Se sono state effettuate delle misurazioni della potenza sonora generata dalle macchine, il protocollo documenta tutti i principali fattori d'influenza nonché i risultati intermedi.

Qualora siano state misurate le caratteristiche acustiche dell'ambiente, il protocollo riporta il tempo di riverberazione per ciascuna banda di frequenza (fig. 57). Inoltre, una curva di propagazione del suono (fig. 58) mostra l'andamento del livello sonoro rilevato e l'andamento da raggiungere con interventi di acustica architettonica. Eventualmente viene realizzata una mappa del rumore (vedi fig. 78, pag. 66), la quale rappresenta la distribuzione spaziale del livello sonoro.

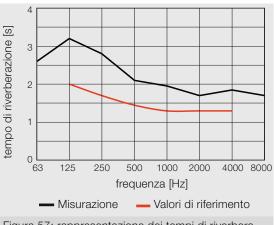
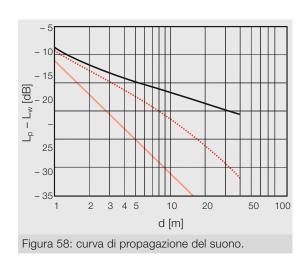



Figura 57: rappresentazione dei tempi di riverberazione.

48

6 Valutazione dell'esposizione al rumore

6.1 Determinare il livello di esposizione al rumore L_{EX}

6.1.1 Fondamenti

Per poter valutare i rischi per l'udito di una determinata attività, è sufficiente raffrontare l'esposizione media al rumore dell'attività con il corrispondente valore limite. In pratica, però, la domanda che ci si pone è la seguente: in che modo si può determinare l'esposizione media al rumore? In fin dei conti, durante l'orario di lavoro le persone non sono esposte sempre allo stesso livello di rumorosità.

Prendiamo l'esempio di una stamperia. Se si eseguono diversi piccoli incarichi, i cosiddetti tempi di allestimento e preparazione delle macchine, ossia quando non vi è un'emissione di rumore significativa, rappresentano una parte importante dell'orario di lavoro. Al contrario, quando si eseguono lavori importanti e lunghi le macchine funzionano per molte ore ininterrottamente. Molte figure professionali, tra cui il falegname, il fabbro, l'operaio forestale, l'operaio edile o il meccanico alternano attività molto rumorose ad altre più silenziose. Ovviamente, anche la composizione in percentuale delle attività varia in base all'incarico o alla situazione.

6.1.2 Calcolo del livello di esposizione al rumore L_{EX}

Come parametro di riferimento per l'esposizione al rumore, le norme ISO 1999¹⁾ e ISO 9612²⁾ citano il livello di esposizione al rumore L_{EX}. Per determinare l'esposizione professionale al rumore la Suva si basa su queste due norme.

Un ruolo determinante nel valutare l'esposizione al rumore è la durata dell'esposizione. La Suva utilizza come riferimento il livello di esposizione giornaliera $L_{\text{EX,8h}}$ e il livello di esposizione annuale $L_{\text{EX,2000h}}$. Dato che per l'insorgere di un'ipoacusia è decisiva un'esposizione protratta nel tempo (vari anni), di solito con l'espressione comune L_{EX} si intende $L_{\text{EX,2000h}}$ e con ciò ci si riferisce al livello di esposizione al rumore.

Figura 59: per alcune professioni l'esposizione al rumore varia in base alle stagioni.

¹⁾ ISO 1999, edizione 1990-01: Acoustics. Determination of occupational noise exposure and estimation of noise-induced hearing impairment.

²⁾ ISO 9612, edizione 1997-06-01: Acoustics. Guidelines for the measurement and assessment of exposure to noise in a working environment.

Se il livello di rumore rimane lo stesso durante tutto l'orario di lavoro e se una persona è esposta a rumore per tutta la giornata lavorativa, il livello sonoro equivalente L_{eq} (vedi punto 2.8.1), misurato sul posto di lavoro corrisponde esattamente al livello di esposizione al rumore L_{EX} . Per i segnali che variano nel tempo esistono diversi modi per determinare il livello di esposizione al rumore. La figura 60 mostra il principio che sta alla base di un simile calcolo.

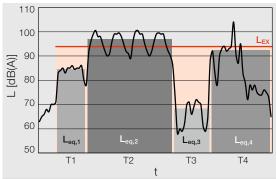


Figura 60: esposizioni al rumore variabili e livello di esposizione al rumore L_{EX}.

$$L_{EX} = 10 \cdot lg \sum_{i} \frac{T_{i}}{T_{0}} \cdot 10^{0,1 \cdot L_{eq,i}} ~[dB(A)] \label{eq:equation:eq}$$

 $L_{\text{eq,i}}$: livello sonoro equivalente per la fase di lavoro i in dB(A)

 T_i : durata della fase di lavoro i in ore T_0 : normale di lavoro (8 h, 40 h o 2000 h)

Formula 16

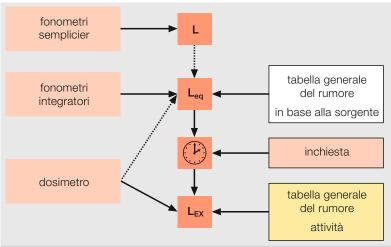


Figura 61: modi di determinare il livello di esposizione al rumore in caso di variazione dell'esposizione e di attività composite.

Se l'esposizione al rumore è variabile, bisogna considerare separatamente le porzioni di tempo o le fasi di lavoro con esposizioni tipiche sempre uguali e determinare il corrispondente livello sonoro continuo L_{eq}. Inoltre, bisogna tener conto della durata di ogni fase di lavoro, ossia quale percentuale occupa nell'orario di lavoro complessivo (durata dell'esposizione riferita ad una determinata esposizione al rumore). Questi dati, in base alla formula 16, consentono di calcolare l'esposizione al rumore durante l'orario normale di lavoro (vedi anche figura 61).

Quando si determinano le fasi di lavoro bisogna considerare che il livello di rumore può dipendere da diversi fattori (dimensioni del pezzo da lavorare, tipo di materiale o velocità di lavorazione). In questi casi, bisogna misurare l'esposizione di un'attività in varie situazioni. Questi risultati devono poi confluire nei calcoli in maniera proporzionale.

$$L_{EX} = 10 \cdot lg \sum_{i} \frac{p_i}{100} \cdot 10^{0,1 \cdot L_{eq,i}} [dB(A)]$$

p_i: durata della fase di lavoro in percentuale dell'orario di lavoro

Formula 17

Il parametro L_{EX} si riferisce sempre ad un orario normale di lavoro T_0 di 8 ore giornaliere, 40 ore settimanali o 2000 ore annuali. Se l'orario di lavoro effettivo Te di una persona è di gran lunga superiore all'orario normale di lavoro T_{e} , il livello di esposizione al rumore deve essere ricalcolato in base alla formula 18 (vedi ISO 9612).

$$L_{EX} = L_{eq,T_e} + 10 \cdot lg \frac{T_e}{T_0} \ [dB(A)]$$

T_e: orario effettivo di lavoro

T₀: orario normale di lavoro (8 h, 40 h o 2000 h)

Formula 18

Un altro modo di determinare il valore L_{EX} consiste nell'effettuare una misurazione sul lungo periodo (ad es. durante un'intera giornata lavorativa). Il livello sonoro equivalente L_{eq} di questa misurazione protratta nel tempo corrisponde esattamente al livello di esposizione annuale L_{EX} per l'attività interessata se, durante la misurazione, l'esposizione al rumore può essere considerata rappresentativa di un anno di lavoro.

6.1.3 Livello di esposizione giornaliera e annuale

Come precedentemente osservato (vedi punto 4.7), ai fini della valutazione del rischio la Suva si basa su due diversi livelli di esposizione. Questi due valori si differenziano sostanzialmente per il fatto che, nel caso dell'esposizione giornaliera, si tiene conto di un singolo giorno con notevole esposizione al rumore, mentre nel caso dell'esposizione annuale si valuta l'esposizione di un intero anno. Per capire se un'esposizione al rumore può danneggiare l'udito, fatta eccezione per i rumori impulsivi molto forti, è determinante sempre l'esposizione annuale. Tuttavia, anche nei casi di esposizione breve al rumore si consiglia di indossare i protettori auricolari. Per una simile raccomandazione la Suva si basa sul livello di esposizione giornaliera.

6.1.4 Strumenti pratici per determinare il livello di esposizione al rumore L_{EX}

In base all'esperienza è alquanto complesso valutare la durata annuale di varie esposizioni al rumore; in genere, è più facile e affidabile fare una stima dei tempi di esposizione settimanale. Le esposizioni prettamente stagionali (ad es. impiego di un soffiatore di fogliame in autunno, raccoglitrice meccanica, ecc.), devono essere considerate in maniera proporzionale.

Per calcolare in maniera semplice il livello di esposizione al rumore la Suva mette a disposizione vari strumenti, tra cui dei modelli di calcoli tabellari che consentono di calcolare automaticamente il livello di esposizione inserendo come dati il livello sonoro continuo L_{eq} e i tempi di esposizione. Per visualizzare questi modelli vedi www.suva.ch/rumore.

Un altro modo per calcolare il livello di esposizione al rumore è il metodo a punti che descriveremo brevemente qui di seguito. Su questo metodo è disponibile un opuscolo all'indirizzo www.suva.ch/waswo-i/86173.

L'elemento centrale del metodo a punti è una tabella (tabella 19) nella quale va inserito per ogni livello di rumore L (L_{eq} o L_{EX}) un determinato numero di punti l'ora (vedi anche Formula 19). Dato che con i punti rumore si ha a che fare con grandezze lineari, i punti possono essere sommati e moltiplicati.

In questo modo, per ogni fase di lavoro è possibile determinare il numero di punti rumore orari in base al valore $L_{\rm eq}$. Se si moltiplica il tempo di esposizione settimanale in ore si ottengono i punti rumore prodotti settimanalmente dalle corrispondenti attività lavorative.

Luogo, macchina, attività	L _{eq}	Punti/h	h/sett.	Punti/sett.
	dB(A)	[A]	[B]	[A·B]
Smerigliatrice angolare	95	32	2	64
Troncatrice a disco	100	100	0,1	10
Lavori di saldatura	86	4	2	8
Montaggio	80	1	15	15
Lavorazione meccanica	83	2	10	20
Rumore di fondo produzione	86	4	10	40
Punteggio totale				157
Tabella 20: esposizione al rumore di un meccanico manutentore.				

Il totale dei punti rumore per tutti i lavori può valere come parametro di riferimento per calcolare l'esposizione al rumore durante una settimana di lavoro. Il totale deve essere diviso per 40 (orario settimanale in ore). In questo modo si ottiene il numero di punti rumore l'ora come media di una settimana di lavoro. Se questo valore medio in punti viene convertito con la tabella a punti (tabella 19) in un livello di rumore, il risultato corrisponde al livello di esposizione al rumore L_{EX} per l'attività considerata.

Per determinare il livello di esposizione giornaliera la procedura è più o meno la stessa, anche se in questo caso la valutazione si applica a una o più giornate di lavoro tipiche e rumorose.

6.1.5 Esempi di calcolo Esempio 1: meccanico manutentore

Nel caso di un meccanico manutentore che lavora in un'azienda del settore alimentare si è rilevato il valore L_{eq} e i tempi di esposizione settimanale ottenuti sono i seguenti (tabella 20):

Numero medio di punti rumore l'ora: 157 punti/sett.: 40 h/sett. = 4 punti/h Da questi ottenere il valore L_{EX} secondo la tabella 19:

4 punti/h \rightarrow L_{EX} = 86 dB(A)

L Punti <80 0 80 1 81 1,3 82 1,6 83 2 84 2,5 85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000 1Tabella 19: livelli di rumore e relativi punti rumore.		
80 1 81 1,3 82 1,6 83 2 84 2,5 85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	L	Punti
81 1,3 82 1,6 83 2 84 2,5 85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	<80	0
82 1,6 83 2 84 2,5 85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	80	1
83 2 84 2,5 85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	81	1,3
84 2,5 85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	82	1,6
85 3 86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	83	2
86 4 87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	84	2,5
87 5 88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	85	3
88 6 89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	86	4
89 8 90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	87	5
90 10 91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	88	6
91 13 92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	89	8
92 16 93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	90	10
93 20 94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	91	13
94 25 95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	92	16
95 32 96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	93	20
96 40 97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	94	25
97 50 98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	95	32
98 63 99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	96	40
99 80 100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	97	50
100 100 101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	98	63
101 125 102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	99	80
102 160 103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	100	100
103 200 104 250 105 315 106 400 107 500 108 630 109 800 110 1000	101	125
104 250 105 315 106 400 107 500 108 630 109 800 110 1000	102	160
105 315 106 400 107 500 108 630 109 800 110 1000	103	200
106 400 107 500 108 630 109 800 110 1000	104	250
107 500 108 630 109 800 110 1000	105	315
108 630 109 800 110 1000	106	400
109 800 110 1000	107	500
110 1000	108	630
	109	800
Tabella 19: livelli di rumore e relativi punti rumore.	110	1000
	Tabella	19: livelli di rumore e relativi punti rumore.

Il calcolo secondo la formula 16 dà lo stesso risultato:

$$L_{EX} = 10 \cdot lg \left[\frac{2}{40} \cdot 10^{0,1.95} + \frac{0,1}{40} \cdot 10^{0,1.100} + \frac{2}{40} \cdot 10^{0,1.86} + \frac{15}{40} \cdot 10^{0,1.80} + \frac{10}{40} \cdot 10^{0,1.83} + \frac{10}{40} \cdot 10^{0,1.86} \right] = 86 \text{ dB(A)}$$
Formula 20

Se si raffrontano i valori limite indicati al punto 4.7 si può notare che il meccanico manutentore è esposto ad un livello di rumore superiore al valore limite e che il datore di lavoro deve adottare le misure di tipo M2 (vedi punto 4.7.3).

Esempio 2: bidello scolastico

L'esposizione al rumore per un bidello scolastico si compone nel seguente modo: passare l'aspirapolvere 6 ore settimanali, tagliare il prato 1 volta la settimana per 4 ore nel semestre estivo, eseguire piccoli lavori di riparazione per 2 ore al mese, pulire il cortile scolastico con un soffiatore di fogliame in autunno per 3 ore per 6 giorni. 2 ore al mese corrispondono ad un'esposizione settimanale di 0,5 ore; 6 x 3 = 18 ore annuali corrispondono ad un'esposizione settimanale di 18 h/a ÷ 50 sett./a = 0,36 h/sett.

Numero medio di punti rumore l'ora: 36 punti/sett. : 40 h/sett. = 0,9 Pt./h Da questi ottenere il valore L_{EX} secondo la tabella 19: 4 punti/h \rightarrow L_{EX} = 80 dB(A)

Il livello di esposizione annuale per il bidello è al di sotto del valore limite e pertanto egli non ha diritto ad un esame dell'udito nell'audiomobile Suva. Inoltre, non si devono adottare le misure di tipo M2. Resta da chiarire se sia necessario adottare le misure di tipo M1 e se il bidello deve indossare i protettori auricolari mentre svolge i lavori di pulizia del cortile con il soffiatore di fogliame oppure quando tosa l'erba. Qui di seguito si determina il livello di esposizione giornaliera al rumore L_{EX,8h} relativo ad una giornata di lavoro in cui il bidello taglia il prato:

Numero medio di punti rumore l'ora: 40 punti/giorno : 8 h/giorno = 5 punti/h Da questi ottenere il valore L_{EX} secondo la tabella 19: 5 punti/h $\rightarrow L_{EX,8h}$ = 87 dB(A)

Luogo, macchina, attività	L _{eq} dB(A)	punti/h [A]	h/sett. [B]	punti/sett. [A·B]
Aspirapolvere	80	1	6	6
Taglio del prato	90	10	2	20
Riparazioni	83	2	0,5	1
Soffiatore di fogliame	94	25	0,36	9
Punteggio totale				36,0
Tabella 21: Esposizione al rumor	e ner un hi	dello scolast	rico	

Luogo, macchina, attività	L _{eq}	punti/h	h/sett. p	ounti/sett.
	dB(A)	[A]	[B]	[A·B]
Taglio del prato	90	10	4	40
Punteggio totale per questo	giorno di	lavoro		40

Tabella 22: calcolo del livello di esposizione giornaliera $L_{\text{EX,8h}}$ considerato il taglio del prato.

Figura 62: quando si usa il soffiatore di fogliame bisogna indossare i protettori auricolari?

Il livello di esposizione giornaliera $L_{EX,8h}$ supera il valore limite di 85 dB(A), pertanto il datore ha l'obbligo di attuare le misure M1 e il bidello deve indossare i protettori auricolari quando utilizza il soffiatore di fogliame. Lo stesso vale per i lavori di pulizia da foglie e detriti in autunno, per i quali si ottiene un valore $L_{EX,8h}$ = 90 dB(A).

Sorgente sonora, fenomeno sonoro		Valori m	nisurati	Conseguenze		
		L _{peak} dB(C)	L _E dB(A)	Misure tecniche	Controlli udito audiomobile	
Pistola fissachiodi con silenziatore integrato		132	100	_	_	
Pistola di polizia	1 sparo	160	117	M1	_	
Pistola di polizia (esercitazioni di tiro)	20 spari	160	130	M2	Avente diritto	
Fucile d'assalto 90	1 sparo	162	122	M2	Avente diritto	
Fucile d'assalto 57	1 sparo	168	129	M2	Obbligatori	
Fucile d'assalto 57 (esercitazioni di tiro)	40 spari	168	145	M2	Obbligatori	
Tabella 23: valutazione dei rumori impulsivi.						

6.2 Valutazione dell'esposizione al rumore impulsivo

6.2.1 Fondamenti

Come indicato al punto 3.5 uno scoppio potente può provocare un danno immediato all'udito. Per questo motivo, gli scoppi, le esplosioni e tutti quei fenomeni acustici il cui livello di picco supera i 135 dB(C) devono essere valutati in base ad un parametro speciale L_E (livello di esposizione sonora).

Per sapere quali misure devono essere adottate in base ai risultati bisogna tornare al punto 4.7.2. Se nello stesso lasso di tempo si è in presenza di rumore costante pericoloso per l'udito e non solo di rumore impulsivo, l'orecchio è ancora più esposto ad eventuali danni. Nel caso di rumori di tipo impulsivo (spari, scoppi, ecc.), quando si calcola il L_E bisogna aggiungere altri 10 dB come margine di sicurezza.

6.2.2 Calcolare i parametri di valutazione

Per misurare il livello di picco sonoro L_{Peak} fino a 140 dB(C) è possibile utilizzare un normale fonometro e un microfono. Per i livelli di picco più elevati sono necessari microfoni speciali (con una sensibilità più bassa), che però non possono essere impiegati con tutti i tipi di fonometro (vedi punto 5.2).

Per calcolare il livello di esposizione sonora L_E si può eseguire una misurazione diretta – anche di più eventi sonori in sequenza – oppure misurare un singolo evento L_{E,1} e fare un calcolo del numero degli eventi simili con la Formula 11 (vedi punto 2.8.2).

Sommare vari eventi in una misurazione continua L_E è possibile solo se il rumore di fondo è molto basso. Se durante la misurazione il valore L_E tra due eventi continua ad aumentare, questo significa che questo parametro è condizionato dal rumore di fondo e pertanto è necessario mettere in pausa il fonometro tra un fenomeno sonoro e l'altro.

6.2.3 Applicazione dei criteri di valutazione

Nella tabella 23 sono elencati alcuni esempi di rumore impulsivo con il corrispondente valore di misurazione e le conseguenze per l'udito.

6.3 Valutazione del posto di lavoro

Ai fini della valutazione dei rischi (pericolo ipoacusia) si possono applicare vari metodi. La Suva mette a disposizione delle aziende vari strumenti; inoltre, offre sostegno e consulenza nei seguenti casi:

- valutazione secondo le tabelle generali del rumore (ALT = Allgemeine Lärmtabelle) della Suva
- misurazione da parte dell'azienda con un fonometro proprio o con uno strumento noleggiato alla Suva
- misurazione eseguita direttamente dal Settore fisica della Suva

La prima variante è indicata soprattutto per le piccole e medie imprese per le quali esiste una tabella generale del rumore. In molti casi è possibile eseguire sul posto di lavoro una valutazione dei rischi per l'udito basandosi sulla tabella del rumore.

Per le aziende di maggiori dimensioni o con posti di lavoro e attività particolari sono maggiormente indicate le varianti 2 e 3.

Se volete noleggiare un fonometro o desiderate che la Suva esegui una misura del rumore, siete pregati di rivolgervi al Settore fisica (tel. 041 419 61 34, e-mail: akustik@suva.ch).

6.3.1 Valutazione dei rischi con le tabelle generali del rumore

È stato dimostrato che in molti settori professionali determinate attività espongono i lavoratori a livelli di rumore tipici. Pertanto, è possibile raccogliere i dati di varie singole misurazioni in varie tabelle generali in base ai settori esaminati. In queste tabelle sono elencati i livelli di esposizione al rumore relativi ad attività tipiche di un determinato settore, con indicazione delle misure da adottare. Grazie a questo strumento le aziende possono valutare da sole il livello di rumore sul posto di lavoro, giudicare i rischi per i lavoratori e adottare le necessarie misure di protezione. Al punto 6.1.2 è indicato come è possibile calcolare il livello di esposizione al rumore L_{FX} per deter-

minate attività o situazioni basandosi sul livello sonoro equivalente L_{eq} (vedi punto 6.5.2) e sui propri rilievi dei tempi di esposizione.

L'elenco completo delle tabelle generali del rumore è disponibile all'indirizzo Internet www.suva.ch/waswo-i/86005. Le tabelle del rumore possono essere visualizzate, stampate e ordinate da Internet all'indirizzo www.suva.ch/waswo-i.

Se ci sono domande in merito alla valutazione del rumore con una tabella generale o se le condizioni specifiche dell'azienda non sono considerate nella tabella, è possibile rivolgersi agli specialisti del Settore fisica della Suva.

6.3.2 Misurazioni svolte dall'azienda

Grazie agli enormi progressi nella tecnica di misurazione del rumore (fonometria) oggi è possibile eseguire con una certa facilità una misura del rumore. Inoltre, per le aziende di dimensioni medio-grandi può essere interessante eseguire individualmente delle misure del rumore oppure valutare direttamente sul posto di lavoro l'efficacia delle misure adottate.

Alle aziende la Suva offre tutto il suo appoggio. In caso di misurazioni sporadiche e per fare il punto della situazione è possibile noleggiare alla Suva dei fonometri integratori di semplice utilizzo. Inoltre, la Suva organizza dei corsi specializzati in lotta al rumore e in misure del rumore. Per conoscere il programma dei corsi vi preghiamo di consultare la pagina Internet www.suva.ch/corsi.

Per maggiori dettagli sulla fonometria e sulle metodologie applicate vedi il punto 5.

6.3.3 Misurazioni svolte dalla Suva nelle singole aziende

La Suva si reca nelle singole aziende per svolgere una serie di misurazioni se da queste misure si possono trarre nuove conoscenze utili ad altre aziende dello stesso settore e se questi dati servono a integrare le informazioni contenute nella banca dati delle tabelle del rumore. Inoltre, tali misurazioni vengono effettuate anche per chiarire l'esposizione al rumore in determinati posti di lavoro o se le particolari caratteristiche dell'azienda richiedono una tecnica di misurazione speciale (misurazione di rumori impulsivi quali spari, scoppi; misurazioni di lunga durata; ultrasuoni). Infine, le visite nelle aziende consentono alla Suva di valutare l'applicazione delle misure antirumore (sistema di sicurezza).

Ogni anno gli specialisti del Settore fisica della Suva si recano in 300-500 aziende per svolgere delle misure del rumore. Una volta esequita la misura del rumore, l'azienda riceve un resoconto dettagliato nel quale sono contenuti tutti i dati relativi alla misurazione e l'indicazione delle misure necessarie in base alle attività e ai posti di lavoro. I dati raccolti sui livelli sonori misurati sulle macchine e sui posti di lavoro vengono poi inseriti nella banca dati Suva delle sorgenti di rumore. Sulla scorta di questi dati, le tabelle vengono verificate ogni anno e, se necessario, aggiornate. In questo modo, i dati ricavati dalle misurazioni svolte nelle singole aziende vanno a confluire nuovamente nella tabella generale del rumore. Questo garantisce che nelle tabelle generali del rumore si tenga conto di eventuali modifiche avvenute nei processi di produzione o di evoluzioni tecnologiche con conseguente modifica dell'esposizione al rumore.

6.4 Protocollo di misura del rumore

Il protocollo di misura del rumore contiene tutti i dati relativi alla misurazione svolta in azienda, così come una valutazione dei rischi per l'udito secondo le attività svolte e varie indicazioni sulle misure da adottare. Esso riporta anche informazioni importanti riguardo i futuri controlli negli audiomobili Suva per i lavoratori esposti al rumore. La tabella con i risultati delle misurazioni consiste in una valutazione riassuntiva in funzione delle attività svolte in azienda e in una serie di risultati raccolti sul posto.

Oltre a descrivere il luogo in cui si è svolta la misurazione (reparto, macchina, attività), per ogni misura viene indicato il campo di variazione del livello di rumore (L_{min} - L_{max}) e il livello sonoro equivalente (L_{eq}). Se i lavoratori non sono esposti in maniera continuativa al rumore, si tiene conto del tempo di esposizione (Exp.), il cui valore è indicato in percentuale. Questi dati consentono di calcolare il livello di esposizione al rumore L_{Ex} .

Quando si esegue una valutazione in base alle attività si indica o il rumore di fondo di un locale o di un reparto, oppure si indica il livello di esposizione al rumore riferito a varie attività. Con il termine «livello del rumore di fondo» si intende il livello sonoro generale di un locale o di un ambiente di lavoro che si rileva al di fuori della zona in cui si trovano le singole macchine (in termini tecnici, rappresenta la zona all'esterno del campo sonoro diretto delle macchine). Questo dato può essere utilizzato per determinare l'esposizione al rumore delle persone che si trovano nella zona di rischio solo temporaneamente (personale manutentore, controllori, capo squadra, capo operai, trasportatori) e che non sono direttamente esposte a specifiche sorgenti di rumore.

Valutazione del rumore in relazione all'attività

Attività, reparto		Nr.	GP L _{eq}	L _{EX}	M	Aud	Code Suva		
(numero di persone)			dB(A)	dB(A)			LQC	ВС	
Stampa									
Stampatore formulari	(10)	5.1		89	2	Α	4918.09	27201120	
Personale allestimento	(12)	5.2		85	2	(A)	4918.09	99990023	
Fabbricazione di blocchi di carta		5.3	81				4740.19		
Personale macchina da lineare	(7)	5.4		87	2	(A)	4741.09	99990023	
Personale macchina per blocchi	(3)	5.5		85	2	(A)	4742.09	99990023	
Manutenzione									
Meccanico	(1)	5.6		83	1	_	9034.68	25401015	
Elettricista	(1)	5.7		80	_	_	9034.08	23210027	

Misurazioni

Luogo, reparto, macchine, attività	Note	L _{min} -L _{max}	L _{eq}	Ехр.	L _{EX}
		dB(A)	dB(A)	%	dB(A)
Stampa (pianterreno)					
Macchina da stampa per formulari 334					
Processing		87-90	88	25	
Castelli di stampa		86-91	89	75	89
Macchina da stampa per formulari 333					
Pulpito di controllo		88-89	89	90	
Castelli di stampa		85-92	87	20	89
Allestimento					
Macchina 422 HPF					
Uscita		83-88	85	90	
Rumore di fondo nel locale	GP	80-83	81	10	85
Fabbricazione di blocchi di carta					
Macchina da lineare 328 Bravo		84-92	87	100	87
Macchina per blocchi 520 Bufalo					
Mettifoglio		78-94	86	75	
Uscita		78-89	81	25	85
Manutenzione					
Meccanico					
Rumore di fondo della produzione			85	50	
Lavori di meccanico			80	50	83

Figura 63: tabella individuale del rumore.

Funzione professionale	L _{EX}	М	Aud
Reparto tranciatura			
Tagliatore (acciaio)	83	-	-
Tagliatore (alluminio)	95	2	Α
Addetto al taglio al cannello	86	2	(A)
Fucina			
Fabbro-ferraio	95	2	Α
Reparto piegatura			
Smussatore	83	•	-
Reparto punzonatura			
Regolatore	86	2	(A)
Punzonatore (presse accentriche)	90	2	Α
Punzonatore (presse idrauliche)	86	2	(A)
Lavorazione meccanica			
Meccanico di macchine	80	•	-
Reparto da fabbro e saldatura			
Fabbro	95	2	Α
Reparto saldatura			
Saldatore a punti	83	1	-
Saldatore a saldatrici robot	80	-	-
Saldatore senza attrezzi a mano	86	2	(A)
Saldatore con attrezzi a mano	95	2	Α

Figura 64: tabella generale del rumore 86238 relativa al settore delle costruzioni metalliche, in acciaio e di apparecchi; livello di esposizione al rumore L_{FX} riferito alle attività svolte.

I livelli di esposizione al rumore **L**_{EX} indicati nel protocollo rappresentano i risultati più importanti della misura del rumore. Da questi si deduce automaticamente quali misure devono essere adottate per un determinato posto di lavoro o per una determinata categoria di lavoratori (colonna **M**). La colonna **Aud** fornisce indicazioni sul diritto o sull'obbligatorietà per i lavoratori a sottoporsi agli esami dell'udito nell'audiomobile della Suva.

Le ultime due colonne della tabella sono una codificazione dei posti di lavoro e servono alla Suva solo ad uso interno.

6.5 Tabelle generali del rumore

Rispetto al protocollo di misura del rumore le tabelle generali (ALT = Allgemeine Lärmtabelle) si limitano a riportare la valutazione del rumore in base alle attività e non forniscono dettagli sulle singole sorgenti di rumore presenti in azienda. Anche la tabella generale è suddivisa in due parti: nella prima parte si trova il livello di esposizione al rumore $L_{\rm EX}$ relativo alle diverse attività, mentre nella seconda parte è elencato il livello sonoro equivalente $L_{\rm eq}$ per i posti di lavoro e le macchine comuni al settore professionale dell'azienda.

6.5.1 Livello di esposizione al rumore in base all'attività svolta

Oltre a descrivere il posto di lavoro in lingua tedesca, francese e italiana, ogni tabella fornisce indicazioni sul livello di esposizione al rumore L_{EX} sul posto di lavoro e sulle misure M da adottare (vedi punto 4.7.3). Nella colonna Aud è indicato se le persone che svolgono in maniera preponderante o esclusivamente una determinata attività hanno il diritto o l'obbligo di sottoporsi ad un esame dell'udito da effettuarsi nell'audiomobile della Suva (tabella 24).

I livelli di esposizione al rumore L_{FX} indicati nella tabella (figura 64) si basano sui risultati delle misurazioni svolte dalla Suva in numerose aziende e riassumono i valori tipici di esposizione e i relativi tempi di esposizione in un livello di esposizione annuale L_{FX}. Per una migliore comprensione i valori sono arrotondati in classi prestabilite (<80, 80, 83, 86 dB(A); a partire da 90 dB(A) l'arrotondamento avviene in classi di 5 dB(A)). È ovvio che ci sono aziende nelle quali l'esposizione effettiva al rumore per un'attività si discosta di molto dai valori indicati nella tabella generale del rumore. È in ogni caso utile confrontare i diversi livelli di rumore con la situazione propria all'azienda.

Fonti di rumore, zone e attività		dB(A)
	GP	AP
Deposito materiale	75	
Reparto tranciatura	83	
Seghe circolare per l'acciaio		83
Seghe circolare per metallo leggero		95
Seghe ad arco (alternative)		80
Troncatrici		100
Cesoie a ghigliottina fino a 3 mm		83
Cesoie a ghigliottina 3 – 8 mm		86
Cesoie a ghigliottina > 8 mm		90
Posti d'ossitaglio		90
Fucina		
Fucinatura a mano		95
Magli di fucina		100
Presse idrauliche		83
Presse per forgiare		95
Reparto piegatura, punzonatura	86	
Presse piegatrici		83
Presse eccentriche , presse		90
Lavorazione meccanica	80	
Torni, fresatrici, trapani, piallatrici	80	
Sbozzatura di grandi pezzi	90	

Figura 65: tabella generale del rumore 86238 relativa al settore delle costruzioni metalliche, in acciaio e di apparecchi; livello sonoro equivalente L_{eq} per varie macchine, attività e ambienti di lavoro.

6.5.2 Livello sonoro equivalente Leq

Nella seconda parte della tabella generale del rumore (figura 65) sono elencati i livelli sonori equivalenti $L_{\rm eq}$ relativi a diverse sorgenti di rumore e ad ambienti di lavoro tipici. Può trattarsi del rumore di fondo nel locale (**GP**) all'esterno del campo sonoro diretto delle macchine (vedi punto 6.4) oppure del livello sonoro relativo al posto di lavoro **AP** che si trova in prossimità di macchinari e di altri sorgenti sonore.

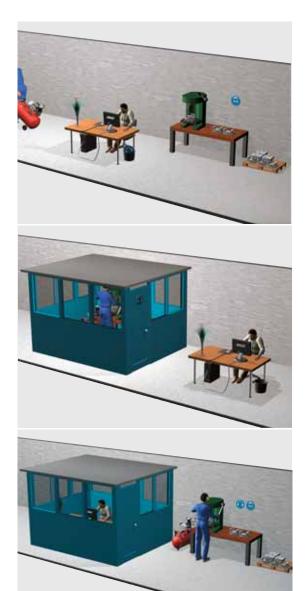
I livelli sonori equivalenti L_{eq} possono essere utili per eseguire una valutazione dei rischi in base alle attività svolte in azienda per le quali nella prima parte della tabella generale non è

indicato un livello di esposizione al rumore L_{EX} ; vale a dire che possono servire per fare un confronto con la situazione riscontrata in azienda. Il punto 6.1 spiega come eseguire questo calcolo.

- A Obbligo di sottoporsi ad esame dell'udito
- (A) Diritto a sottoporsi ad esame dell'udito
- Nessun diritto ad esami dell'udito

Tabella 24: significato delle abbreviazioni nella colonna Aud.

7 Bonifica acustica


7.1 Riferimenti di legge

Al punto 4.2 del presente opuscolo sono indicati in maniera dettagliata i riferimenti di legge relativi alle misure tecniche antirumore. In particolar modo, occorre citare l'articolo 34 OPI (rumore e vibrazioni). Con la direttiva CFSL n. 6508 concernente il ricorso ai medici del lavoro e agli altri specialisti della sicurezza sul lavoro è stato creato uno strumento che consente di applicare i requisiti dell'OPI. Bisogna inoltre promuovere ulteriormente la sicurezza sul lavoro e dare maggiore importanza alla lotta antirumore. È necessario inoltre garantire l'adattabilità delle misure alle circostanze ai sensi della LAINF (art. 82, cpv 1).

7.2 Principi di lotta al rumore

Sui posti di lavoro il rumore è generato principalmente dalle macchine e dagli impianti. Il modo più efficace per ridurre il rumore è intervenire alla fonte adottando una serie di misure tecniche. Tuttavia, è necessario valutare attentamente quali sono le possibilità per ridurre il rumore senza pregiudicare l'efficienza delle macchine e senza creare ulteriori pericoli.

Ormai è consuetudine ed è raccomandabile per le aziende rivolgersi ad uno specialista per una bonifica acustica. Anche se gli addetti ai lavori possono da soli applicare misure antirumore semplici, la lotta al rumore richiede, dal punto di vista tecnico, conoscenze approfondite e un bagaglio di esperienza. Tra le misure in fase progettuale è importante citare il ricorso agli specialisti. Alla Suva è disponibile un elenco di ditte che si occupano di lotta al rumore, di acustica architettonica e ambientale e di attenuazione delle vibrazioni (codice 86023.i oppure www.suva.ch/waswo-i/86023).

Spesso, purtroppo, si investe molto denaro in misure che si rivelano poco o per nulla efficaci. L'inquinamento acustico deve essere invece combattuto con una strategia mirata e sistematica sin dalla fase di progettazione. In tale senso, può essere di aiuto consultare la lista di controllo Suva «Rumore sul posto di

Figura 66: tre tipi di misure antirumore: eliminare

la sorgente di rumore, schermare la sorgente o pro-

lavoro» (codice 67009.i oppure www.suva.ch/waswo-i/67009).

teggere la persona esposta.

,,

7.3 Misure antirumore

In linea di massima, ci sono tre possibilità per affrontare un pericolo: lo si può eliminare, si può schermare la fonte del pericolo oppure proteggere la persona minacciata, come illustrato dalla figura 66.

Se il rumore rappresenta un problema complesso, è utile analizzare le misure possibili e realizzabili per limitare la propagazione del suono. Solo così è possibile trovare una soluzione ottimale. Il schema (figura 67) riassume i diversi aspetti della lotta al rumore e illustra le possibili misure da adottare.

Le priorità da 1 a 3 indicate nella figura 67 sono spiegate ai punti 7.4–7.6 sulla scorta di vari esempi. La presente pubblicazione non affronta approfonditamente il problema della protezione acustica. Per maggiori dettagli invitiamo i lettori a consultare l'opuscolo «Lotta contro il rumore nell'industria. Nozioni generali» (codice 66076.i).

7.4 Sorgente di rumore: priorità d'intervento 1

Le misure di protezione acustica che rientrano in questa categoria rappresentano le misure più importanti in quanto il rumore viene affrontato alla fonte. Queste misure occupano un posto di primo piano.

7.4.1 Riduzione del rumore alla sorgente Si può intervenire sulla generazione del suono utilizzando macchinari o procedure con un basso impatto acustico.

Gli acquirenti, i venditori, gli ingegneri progettisti, i costruttori, i responsabili di produzione e i titolari d'azienda hanno l'obbligo per legge (vedi punto 4) di combattere il rumore. La lotta al rumore richiede quindi anche il coordinamento di tutti i soggetti coinvolti.

Al momento di acquistare una nuova macchina o un impianto nuovo bisogna prestare molta attenzione al fattore rumore. A volte, le macchine più silenziose sono anche quelle più costose. Bisogna comunque considerare che modificare un macchinario rumoroso per ridurre l'impatto acustico spesso non è fattibile tecnicamente oppure può risultare molto costoso. Vale quindi la pena fare un raffronto tra i costi per l'acquisto di una macchina con un basso impatto acustico e le spese di investimento dal punto di vista costruttivo per un impianto rumoroso.

Altri modi per ridurre il rumore alla fonte:

- ottimizzazione degli elementi costruttivi (ad es. cuscinetti, ingranaggi, telai, utensili) dal punto di vista delle vibrazioni,
- evitare sollecitazioni estreme che possono insorgere in caso di forti colpi, forti accelerazioni e decelerazioni o che possono essere causate da resistenze al moto dell'aria in caso di elevata velocità (ottimizzazione del ciclo forza-tempo),
- dimensionamento (ad es. rinforzo) e fabbricazione corretti (ad es. equilibratura, levigatura delle superfici),
- scelta di materiali adeguati,
- basse velocità della corrente,
- sostituire le lavorazioni molto rumorose con altre più silenziose (ad es. utilizzare pistole di sicurezza ad aria compressa a bassa emissione sonora),
- controlli regolari (ad es. manutenzione a seconda delle necessità invece di una manutenzione periodica).

7.4.2 Riduzione della trasmissione sonora

La riduzione della trasmissione sonora si pone come obiettivo quello di non trasmettere il rumore impattivo ad una struttura che a sua volta lo propaga a superfici riflettenti. Alcuni modi per ridurre la trasmissione del suono:

- smorzare il rumore strutturale, ad es. inserendo dei pannelli sandwich in lamiera
- utilizzare sospensioni elastiche (smorzamento del rumore strutturale e delle vibrazioni, figura 68)
- desolidarizzare gli elementi che propagano il suono dalla fonte, ad es. inserendo dei raccordi elastici (giunti di compensazione, figura 69)
- scegliere materiali aventi un'elevata capacità interna di smorzamento (ad es. materiali compositi)
- utilizzare dei silenziatori per lo scarico dei gas

7.4.3 Riduzione della radiazione sonora

Se non si riesce ad impedire la trasmissione del rumore strutturale ad altre superfici radianti, bisogna intervenire direttamente su queste ultime.

Alcuni modi per ridurre la riflessione sonora sono:

- ridurre il grado di radiazione, ad es. rinforzando o rivestendo le superfici oppure utilizzando superfici perforate (cortocircuito acustico)
- utilizzare incapsulaggi parziali integrati nelle macchine (figura 70)

Figura 68: elemento in gomma per il basamento di un ventilatore.

Figura 69: elemento di compensazione in plastica posizionato nella condotta di scarico dell'aria di un impianto di processo.

Figura 70: incapsulaggio parziale su una macchina per la stampa di tubi (200 tubi al min.); a un metro di distanza il livello sonoro è di 77 dB(A).

7.4.4 Incapsulaggio

Dal punto di vista acustico, l'incapsulaggio è una misura secondaria. Gli incapsulaggi impediscono la propagazione delle emissioni sonore prodotte da un macchinario. Spesso, in presenza di impianti e macchinari rumorosi l'unica soluzione efficace per ridurre le emissioni sonore è l'incapsulaggio (ad es. punzonatrici, trituratori di rifiuti plastici, centrali elettriche di cogenerazione), come dimostrato nelle figure da 71 a 75.

Nell'opuscolo «Des enceintes pour lutter contre le bruit» (non disponibile in italiano, codice 66026.f) sono raccolte ampie spiegazioni su come progettare e realizzare un incapsulaggio.

Ci sono anche casi in cui l'impianto da incapsulare è troppo grande (ad es. macchine per la stampa, linee di laminazione, linee di fabbricazione della carta, ecc.). In questi casi si realizza una cabina per gli operatori che funge da capsula (figura 75).

Figura 71: incapsulaggio di un trituratore per rifiuti plastici. Riduzione del rumore: circa 12 dB(A).

7.4.5 Trasporto e trasbordo di materiale

Le misure antirumore nel settore del trasporto e del trasbordo di materiale non rientrano nei punti 7.4.1–7.4.3. Le misure per ridurre le emissioni sonore si basano, a seconda dei casi, sulla riduzione del rumore alla fonte (ad es. riduzione dell'altezza di caduta) o sulla riduzione della riflessione sonora (ad es. impiego di lastre perforate).

Figura 72: incapsulaggio di un impianto per la saldatura delle lattine. Grazie alla capsula il livello sonoro sulla parete esterna si è ridotto a 82 dB(A).

Figura 73: macchina per la stampa rotativa con piegatrice incapsulata. Il livello sonoro passa da 98 a 84 dB(A).

Figura 74: impianto di imballaggio completamente incapsulato. La capsula riduce le emissioni sonore di 17 dB(A).

Figura 75: sala di comando di una macchina per carta. All'interno della sala di comando il rumore di fondo è di 65 dB(A), mentre all'esterno il rumore può raggiungere i 90 dB(A).

Per quanto riguarda il trasporto interno aziendale, solitamente le emissioni sonore prodotte non superano il limite per il rumore pericoloso. Queste emissioni possono essere molto fastidiose, soprattutto se il rumore prodotto dai cicli di fabbricazione (ad es. in un reparto di montaggio) è relativamente basso. Per questo motivo il rumore prodotto dalle attività di trasporto si riduce efficacemente con l'impiego di impianti moderni.

Per trasportare del materiale senza un elevato impatto acustico bisogna rispettare due principi fondamentali:

- 1. ridurre l'altezza di caduta nei punti di carico e scarico dei materiali:
- negli impianti automatici utilizzare recipienti o scivoli regolabili in altezza,
- negli impianti di insaccamento per piccoli pezzi prevedere dei percorsi di caduta a più livelli.
- 2. ammortizzare le superfici riflettenti:
- evitare la riflessione diretta sulle lamiere inserendo un elemento in gomma (eventualmente come strato di usura),
- ridurre la propagazione del rumore strutturale aumentando lo smorzamento del materiale (ad es. passerelle mobili, lamiere collaboranti).
- ridurre la riflessione sonora utilizzando lastre perforate.

7.5 Locali di lavoro: priorità d'intervento 2

7.5.1 Suddivisione spaziale

Al momento di progettare i locali di fabbricazione è importante considerare la suddivisione degli spazi e prestare attenzione ai seguenti aspetti:

- limitare la propagazione sonora, ad es. suddividendo i locali o montando dei divisori (figura 76, figura 77),
- concentrazione spaziale delle sorgenti sonore.

Tramite il nastro trasportatore (figura 76) i rifiuti plastici vengono convogliati al trituratore del piano interrato (figura 77). In prossimità del trituratore il livello sonoro è di circa 100 dB(A), vicino al nastro trasportatore di circa 80 dB(A).

7.5.2 Misure di acustica architettonica Quando si parla di misure di acustica architettonica si intende principalmente l'attenuazione del rumore aereo di soffitti, pareti, porte

Figura 76: nastro trasportatore di un trituratore di materie plastiche.

Figura 77: trituratore di materie plastiche in un locale separato.

e finestre. La qualità acustica di questi elementi architettonici deve tenere conto della differenza di livello sonoro tra gli ambienti rumorosi e le esigenze dei locali silenziosi (vedi punto 4.8).

Con l'espressione misure di acustica architettonica si intendono tutti gli strumenti che consentono di ridurre o intervenire sulla riverberazione di un locale e sulla propagazione sonora all'interno dello stesso. L'esposizione al rumore sul posto di lavoro si ottiene sommando il suono diretto (rumore del posto di lavoro e dei macchinari), con le riflessioni sonore e le emissioni sonore di tutte le altre sorgenti presenti nel locale.

Le misure di acustica architettonica (ad es. i soffitti fonoassorbenti) riducono le riflessioni sonore. Con un'acustica ottimale è possibile ridurre sensibilmente il livello del rumore di fondo di un ambiente. In assenza di limiti spaziali (ad es. all'aperto) se si raddoppia la distanza dalla fonte di rumore, il livello sonoro si riduce di 6 dB. In un locale riverberante questo valore varia da 1 a 2 dB, mentre in un locale con una buona acustica questo valore sale a 4 dB. Per determinare questo parametro si applica la curva di propagazione sonora e si determina DL2 in dB. La procedura è normata a livello internazionale (EN ISO 11690-3) e indica quanto è grande il tasso di decadimento del livello sonoro raddoppiando la distanza rispetto alla sorgente puntiforme.

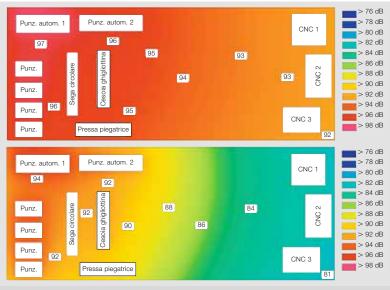


Figura 78: ripartizione dei livelli sonori in un locale di fabbricazione senza (in alto, DL2 = 2,1 dB) e con soffitto fonoassorbente (in basso, DL2 = 4,3 dB).

Vicino alla sorgente sonora un controsoffitto fonoassorbente non fa che ridurre di poco il livello sonoro. Più ci si allontana dalla sorgente sonora, più il livello sonoro si attenua. Grazie ad un programma di elaborazione elettronica è possibile calcolare la propagazione sonora nei locali di lavoro. Questo calcolo tiene conto del livello di potenza sonora di ogni singola macchina e delle caratteristiche fonoassorbenti delle superfici delimitanti il locale (ad es. controsoffitto fonoassorbente). Il risultato di questo calcolo è evidenziato dall'esempio riportato nella figura 78.

Interpretazione della figura 78

- Senza soffitto fonoassorbente i livelli sonori in tutto il locale oscillano tra 92 e 97 dB(A).
 Anche nella parte destra del locale il livello sonoro raggiunge valori sopra 90 dB(A) senza rumore proprio.
- Con il soffitto fonoassorbente i livelli sonori in prossimità della sorgente di rumore si attestano sempre tra i 90 e i 95 dB(A). Invece, nella parte destra del locale il livello varia da 80 a 85 dB(A), ossia fino a 11 dB(A) più basso.

Figura 79: tipico locale di fabbricazione: costruzione in acciaio con lamiera profilata, senza un efficace soffitto fonoassorbente. Questo locale è molto riverberante e il rumore emesso dal macchinario è molto fastidioso in tutto il locale.

Figura 80: soffitto fonoassorbente in un locale dove si effettua la saldatura di alluminio.

Figura 81: soffitto fonoassorbente in una fabbrica di imbottigliamento. Qui si impiegano dei pannelli in lana minerale (cosiddetti «baffles»).

Le misure di acustica architettonica influiscono notevolmente sulla qualità del posto di lavoro. Ancora oggi gli stabilimenti di produzione vengono realizzati senza tener conto delle norme di acustica e quindi non rispettando i requisiti minimi indicati nella guida all'Ordinanza 4 concernente la Legge sul lavoro (figura 79). L'inserimento di elementi fonoassorbenti nelle pareti o nel soffitto corrisponde allo stato della tecnica (figure 80–82).

Per maggiori informazioni su questo argomento consultare la pubblicazione Suva 66008.i.

Figura 82: soffitto fonoassorbente in un'industria tessile.

7.6 Riduzione dell'esposizione al rumore: priorità d'intervento 3

7.6.1 Organizzazione del lavoro

Si può limitare l'esposizione al rumore per i lavoratori adottando le seguenti misure organizzative.

- Ridurre le ore di lavoro con esposizione al rumore.
- Cambiare mansione sul posto di lavoro («job rotation»).
- Svolgere i lavori rumorosi al di fuori dell'orario fisso in modo da ridurre il numero delle persone esposte al rumore.

7.6.2 Dispositivi di protezione individuale

Se non è possibile ridurre le emissioni sonore al di sotto del limite pericoloso per l'udito, per l'individuo rimane comunque un'ulteriore possibilità per proteggersi. L'uso dei protettori auricolari e i problemi ad esso correlati sono trattati al punto 8.

8 Dispositivi di protezione individuale

8.1 Quando le misure tecniche non bastano

Se le misure tecniche non sono sufficienti a portare ad un livello non dannoso le emissioni sonore, l'individuo deve proteggere il proprio udito. I protettori auricolari rappresentano un'efficacia protezione dai danni uditivi; sono facili da usare, di pronto uso e molto efficaci.

Ciò nonostante, il loro uso è associato a vari fastidi. Per questo motivo si dovrebbe ricorrere ai protettori auricolari come ultima soluzione.

8.2 Informare e istruire

L'azienda deve informare i dipendenti sul fatto che sul posto di lavoro sono esposti a rumore pericoloso per l'udito. Nello specifico, lavoratori devono essere istruiti in merito ai seguenti punti:

- effetti del rumore dannoso per l'udito e insorgenza di danni uditivi; effetti di un danno uditivo nella vita quotidiana (vedi punto 3),
- misure adottate volte a ridurre l'esposizione al rumore, motivi per cui l'uso dei protettori auricolari è obbligatorio e inevitabile,
- dove e per quali attività è necessario indossare i protettori auricolari (sopralluogo, segnaletica),
- importanza dell'uso corretto dei protettori per l'isolamento acustico e l'efficacia protettiva.
- importanza della disciplina d'uso ai fini dell'efficacia dei protettori,
- modalità di impiego, pulizia, sostituzione dei protettori auricolari (istruzioni pratiche),
- possibilità di acquisto, disponibilità dei protettori auricolari,
- vantaggi e svantaggi dei vari dispositivi di protezione in dotazione; idoneità per specifiche attività,
- conseguenze in caso di mancato uso dei protettori auricolari,
- partecipazione dei lavoratori alla scelta dei protettori auricolari.

Le informazioni e le istruzioni devono essere messe per iscritto; bisogna inoltre indicare quali persone sono state istruite, quando, da chi e su quali argomenti.

Per rendersi conto in maniera diretta e chiara degli effetti di un danno uditivo, vi consigliamo di utilizzare il CD della Suva «Audio Demo 3». Questo CD contiene, tra le altre cose, una serie di esempi che mostrano come un individuo percepisce il parlato e la musica in caso di un danno uditivo (www.suva.ch/waswo-i/99051).

Un orecchio sano è insostituibile.

Anche se la tecnologia ha fatto passi da gigante negli ultimi anni, è importante sapere che gli apparecchi acustici di ultima generazione non possono compensare totalmente gli effetti di un danno uditivo. La capacità uditiva di un orecchio sano in condizioni difficili (conversazione in un ristorante con rumori di fondo o durante una discussione animata) non può affatto essere paragonata a quella di un apparecchio acustico, per quanto sia moderno.

8.3 La protezione ottimale per l'udito

Quando si sceglie un protettore auricolare, è necessario tener conto di una serie di fattori al fine di garantire un sufficiente grado di protezione per le persone esposte. Eccoli:

- 1. confort d'uso
- 2. tipologia lavorativa
- 3. attenuazione sonora necessaria in base alla tipologia di rumore

I primi due fattori sono decisivi nella scelta della protezione da usare tutti i giorni e sull'efficacia protettiva dei DPI. Prendiamo l'esempio di un capo reparto in un'azienda di produzione che ogni giorno è esposto più volte al rumore per alcuni minuti e che per il resto del tempo lavora in un ufficio, al riparo da ogni emissione sonora. Nel suo caso sono indicate le cuffie antirumore in quanto si possono mettere e togliere rapidamente. Al contrario, i suoi dipendenti, obbligati ad usare costantemente una protezione per l'udito, opteranno per gli inserti auricolari (tappi), anche se il loro corretto posizionamento nel condotto uditivo richiede un po' di tempo. In estate per questi lavoratori sarebbe impensabile portare tutto il giorno le cuffie.

Questo esempio dimostra un ulteriore fatto, ossia che è molto importante che i lavoratori possano scegliere i protettori auricolari da una vasta gamma e che la scelta avvenga in base alle proprie esigenze.

La tabella 25 mostra i valori di attenuazione che i protettori auricolari devono avere per poter offrire una sufficiente protezione. 1) È bene evitare un'attenuazione eccessiva (iperprotezione) altrimenti si rischia di rendere difficoltosa la percezione dei suoni graditi (ad es. conversazione, squillo del telefono o segnali di allarme). Il valore SNR di un protettore auricolare è indicato sull'imballaggio oppure nelle istruzioni per l'uso.

L _{EX} in dB(A)	Valore SNR raccomandato
fino a 90	15-20 dB
90-95	20-25 dB
95-100	25-30 dB
100-105	30-35 dB
oltre 105	verifica particolare
Tabella 25: quale at necessaria?	tenuazione (valore SNR) è

Figura 83: le cuffie antirumore si possono indossare in un battibaleno e sono ideali se ci espone al rumore per poco tempo.

Se il livello di esposizione al rumore L_{EX} è inferiore a 90 dB(A) è sufficiente utilizzare dei protettori auricolari con un valore SNR che varia da 15 a 20 dB. Dato che i protettori auricolari devono garantire un'attenuazione minima di 15 dB, si può scegliere «liberamente» tra i vari dispositivi in commercio. I protettori auricolari con un valore SNR superiore a 25 dB non sono raccomandabili, poiché isolerebbero eccessivamente le persone dall'ambiente circostante (rischio di iperprotezione).

Se il livello di esposizione al rumore L_{EX} supera ampiamente i 100 dB(A), è necessario rivolgersi ad uno specialista della sicurezza sul lavoro per una valutazione più accurata. Questo vale anche per i rumori con frequenze molto basse [L_{Ceq} superiore a 105 dB(C)], ad esempio con i forni di fusione elettrici, con i grandi motori diesel, con gli impianti di trasporto a vibrazione o con i compressori.

¹⁾ Per una valutazione più precisa si rimanda alla norma EN 458, la quale descrive in maniera dettagliata i criteri di scelta dei DPI.

Alcune stime eseguite dalla Suva hanno rilevato che, in Svizzera, su 200 000 persone circa esposte professionalmente al rumore l'85% circa è esposto a valori di rumore compresi tra 85 e 92 dB(A) (figura 84). Per queste persone i protettori auricolari aventi un valore di attenuazione compreso tra 15 e 20 dB offrono una buona protezione.

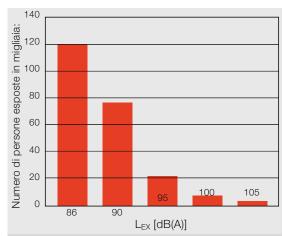


Figura 84: numero stimato di persone che sul posto di lavoro sono esposte ad un determinato livello di rumore.

Solo il 15% delle persone professionalmente esposte al rumore sono confrontate a livelli di rumore pari o superiori a 93 dB(A), ragion per cui devono utilizzare dei protettori auricolari con un forte valore di attenuazione. I protettori auricolari con particolari caratteristiche di attenuazione sono necessari solo per coloro che sono esposti a livelli di rumore molto alti o a rumori a bassa frequenza (figura 85).

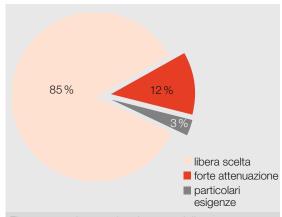


Figura 85: solo una piccola parte delle persone esposte al rumore deve usare dei protettori auricolari con particolari caratteristiche di attenuazione.

8.4 Uso quotidiano

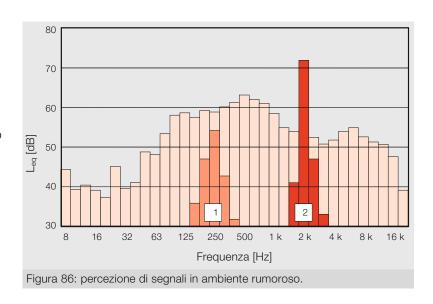
Per far sì che una persona sia adeguatamente protetta dagli effetti dannosi del rumore, è determinante l'utilizzo costante, sistematico e corretto dei protettori auricolari tutti i giorni lavorativi.

Alcune indagini hanno rivelato che la capacità di attenuazione degli inserti auricolari si riduce in pratica di 5–10 dB se non sono inseriti correttamente nel condotto uditivo. È quindi fondamentale che i protettori auricolari siano utilizzati rispettando il foglietto di istruzioni fornito dal fabbricante.

Protezione udito			Tempo	con pr	otezione	e udito		
SNR	Attenuazione efficace	100 %	99%	95%	90%	75%	50%	25%
30 dB	25 dB	69	75	81	84	88	91	93
20 dB	15 dB	79	80	83	85	88	91	93
15 dB	10 dB	84	84	86	87	89	91	93

Tabella 26: se i protettori auricolari vengono utilizzati solo durante una parte dell'esposizione al rumore $[L_{EX} = 94 \text{ dB(A)}]$, la loro efficacia si riduce.

Se i protettori auricolari vengono utilizzati solo per un tempo limitato rispetto al tempo di esposizione al rumore, la loro efficacia diminuisce notevolmente e i rischi per l'udito aumentano velocemente a livelli critici. La tabella 26 mostra gli effetti di un'esposizione al rumore L_{EX} di 94 dB(A) se i protettori auricolari vengono indossati in maniera discontinua.¹⁾


Per garantire una sufficiente protezione, un protettore con un forte potere di attenuazione (valore SNR pari a 30 dB) deve essere indossato per il 90 % della durata di esposizione al rumore. Invece, un protettore con un basso potere di attenuazione (valore SNR pari a 15 dB) deve essere indossato per il 99 % della durata di esposizione al rumore in modo che il rumore residuo non superi il valore limite. Dato che questa condizione è difficile da rispettare, in base alla tabella 25 si raccomanda l'uso di un protettore auricolare con un valore SNR di 20 dB se il livello di esposizione al rumore L_{FX} è di 94 dB(A). In questo modo è garantita una sufficiente protezione anche in condizioni sfavorevoli.

Questi esempi dimostrano chiaramente quanto è importante l'uso sistematico e corretto dei protettori auricolari.

8.5 Udibilità dei segnali con i protettori auricolari

Con i protettori auricolari una persona percepisce tutti i suoni in maniera più bassa a seconda del valore di attenuazione del protettore. In questi casi, lo spettro di frequenza dei vari rumori cambia in maniera impercettibile. Con i protettori auricolari è possibile distinguere tra di loro i vari rumori o percepire le differenze di suono, anche se per questo è necessaria una fase di adattamento di alcune settimane.

I segnali acustici (squillo del telefono, segnali di avvertimento, richiami) possono essere uditi se nella relativa banda di frequenza hanno un livello di 5–7 dB più alto rispetto all'interferenza. Per capire bene il parlato, la voce deve essere di 7–10 dB più forte rispetto al rumore di fondo.

Prendiamo l'esempio di due segnali, come indicato nella figura 86. Oltre al rumore di fondo provocato da un compressore a pistoni è percepibile solo il segnale 2, in quanto nella banda di frequenza di 2000 Hz è di circa 20 dB più forte rispetto al rumore di fondo. Il segnale 1 non è udibile in quanto è di 5 dB più basso rispetto al rumore del compressore nella banda di frequenza di 250 Hz.

¹⁾ L'esempio parte dal presupposto che il protettore non sia indossato in maniera corretta e che la sua capacità di attenuazione sia inferiore di 5 dB rispetto al valore SNR.

Indossare i protettori auricolari non influisce sul fatto che il segnale 2 sia udibile, mentre il segnale 1 si perde nel rumore di fondo. Tuttavia, se il segnale 2 è attenuato dal protettore auricolare al punto tale da portarlo al di sotto della soglia di udibilità, la persona che porta i protettori auricolari non sarà più in grado di percepire questo segnale. Per questa ragione gli addetti al rialzo dei veicoli ferroviari e i armatori di binari devono avere una capacità uditiva minima che consente loro di udire i segnali di avvertimento. Questi problemi possono essere ridotti se si valuta correttamente la capacità di attenuazione dei protettori auricolari, che deve essere sufficiente ma non eccessiva.

All'indirizzo www.suva.ch/prodotti-di-sicurezza è disponibile un elenco di fornitori di protettori auricolari e un'ampia gamma di dispositivi di protezione.

Sempre più spesso le aziende si chiedono durante quali attività è consentito ascoltare musica. Dato che le persone possono mettere in pericolo se stesse o gli altri, ad es. perché non avvertono un segnale di pericolo, si raccomanda di chiarire il problema facendo riferimento a quanto riportato nella lista di controllo «Ascoltare musica sul posto di lavoro» (www.suva.ch/waswo-i/67121).

Per conoscere le caratteristiche, i vantaggi e gli svantaggi dei vari dispositivi di protezione per l'udito (compresi gli inserti auricolari realizzati su misura) vi consigliamo di consultare l' «Informativa sui protettori auricolari» (www.suva.ch/waswo-i/86610).

L'opuscolo «La protezione individuale dell'udito» (codice 66096.i) fornisce informazioni dettagliate e nozioni di base in materia. Il testo contiene anche consigli utili su come superare le resistenze e i problemi nell'utilizzo dei protettori auricolari.

La lista di controllo «Protettori auricolari» vi consente di verificare se i protettori auricolari sono utilizzati correttamente e sottoposti ad adeguata manutenzione (www.suva.ch/waswo-i/67020).

9 Prevenzione dei danni uditivi da rumore

Per prevenire i danni uditivi è possibile adottare misure di vario tipo (tecniche, organizzative, individuali). In molti casi, tuttavia, non si è in grado di risolvere il problema rumore con un solo tipo di misure. Se si vuole ottenere una protezione ottimale, è necessario pianificare e organizzare sistematicamente varie misure. La protezione dal rumore deve inoltre diventare parte integrante del sistema di sicurezza aziendale.

Se le persone esposte effettuano periodicamente un esame dell'udito, si è in grado di capire se le misure adottate sono adeguate oppure no. Ad esempio, è possibile diagnosticare un'ipoacusia al primo stadio, prima ancora che questa si manifesti concretamente nella vita di tutti i giorni. Se una persona è già affetta da un deficit uditivo, l'adozione di adeguate misure di protezione può impedire di peggiorare la situazione.

9.1 La protezione dell'udito nel sistema di sicurezza aziendale

9.1.1 Piano di protezione dell'udito in azienda

Se in un'azienda i lavoratori sono esposti a rumore dannoso per l'udito o se questo potrebbe accadere in futuro, è necessario che il piano di protezione e prevenzione dei danni uditivi diventi parte integrante del sistema di sicurezza aziendale. La tabella 28 riporta alcuni punti importanti. L'elenco deve essere modificato e adattato a seconda delle esigenze dell'azienda.

La lista di controllo «Rumore sul posto di lavoro» è un valido strumento per scoprire quanto resta ancora da fare in materia di protezione o per verificare le misure già applicate (www.suva.ch/waswo-i/67009).

Figura 87: l'uso dei DPI deve essere regolamentato nell'ambito del sistema di sicurezza aziendale.

9.1.2 Come comportarsi in caso di emergenza

Se, nonostante le misure adottate, dovesse verificarsi un infortunio, o un evento di altro tipo con conseguenze per l'udito, è importante intervenire prontamente e in modo corretto (vedi tabella 27). Le possibilità di guarigione aumentano notevolmente se si interviene prontamente (1–2 giorni dopo l'evento).

Disturbo	Come comportarsi	
Sensazione di «ovatta nelle orecchie»	Nessuna particolare misura; il disturbo dovrebbe scomparire entro le 24 ore	
Fischii o ronzii (acufeni)	Se il disturbo non scompare entro le 24 ore o il mattino successivo, consultare un medico o un otorino	
Improvvisa ipoacusia da un orecchio o da entrambi gli orecchi	Rivolgersi immediatamente ad un medico o a un otorino	
Tabella 27: comportamento in caso di disturbi dell'udito.		

Capitolo nel manuale di sicurezza	Cosa fare?	Dettagli in	
Principi e obiettivi di sicurezza	Far sì che la tutela della salute e la protezione dell'udito diventino principi dell'azienda	(66101.i)	
2. Organizzazione della sicurezza	Stabilire le responsabilità (in linea generale addetto alla sicurezza)	(66101.i)	
3. Formazione, istruzione e informazione	Informare i dipendenti sul pericolo rappresentato dal rumore: rischi di un danno uditivo da rumore effetti di un danno uditivo nella vita di tutti i giorni nessuna possibilità di guarigione illustrare le misure tecniche adottate spiegare le misure individuali e istruire i dipendenti a riguardo spiegare le norme di sicurezza e istruire i dipendenti a riguardo particolare protezione per le donne incinte	Capitoli 3, 4.1, 4.4, 8.2	
4. Regole di sicurezza	Regolamento sull'uso obbligatorio dei protettori auricolari: settori esposti a rumore attività	Capitolo 8.2	
	Tener conto del fattore rumore in caso di: acquisto di nuovi macchinari valutazione di nuovi metodi di lavoro ristrutturazioni risanamenti	Capitolo 7	
	Valutazione dei rischi in base ai limiti i vigenti per il rumore pericoloso	Capitolo 6	
6. Pianificazione e realiz- zazione delle misure	Verifica e attuazione delle misure di riduzione del rumore	Capitolo 7	
7. Organizzazione in caso di emergenza	Regolamentare la procedura in caso di problemi acuti all'udito	Capitolo 9.1.2	
8. Partecipazione	Coinvolgere il personale: nella scelta degli otoprotettori in dotazione nella pianificazione delle misure tecniche, organizzative e individuali	Capitoli 4.2.4, 8.3	
9. Tutela della salute	Fare in modo che l'azienda partecipi al programma di prevenzione della Suva	Capitolo 9.2	
10. Controllo, audit	 Verifica periodica dei provvedimenti adottati Individuazione delle possibilità di miglioramento 	(66101.i)	
Tabella 28: piano di protezione dell'udito nel sistema di sicurezza aziendale.			

9.1.3 Sospetto danno uditivo da rumore: come comportarsi

Se il dipendente di un'azienda lamenta di non sentire bene e se si sospetta una probabile relazione con una precedente esposizione professionale al rumore, questa persona deve rivolgersi ad un otorino per un esame dell'udito. Se lo specialista accerta che c'è un danno uditivo e che è dovuto ad una precedente esposizione professionale, l'azienda deve notificarlo all'assicuratore infortuni (Suva o assicurazione privata).

Dopo la notifica alla Suva, l'agenzia competente si mette in contatto con l'assicurato per acquisire maggiori informazioni sulle attività professionali precedentemente svolte (anamnesi professionale) e per rilevare la correlata esposizione al rumore. Sulla scorta di questi dati si procede ad una valutazione tecnica dell'esposizione professionale al rumore. Se per i posti di lavoro e le attività svolte nei periodi indicati sono presenti dei protocolli di misura del rumore, ci si baserà su questi per svolgere una valutazione diretta. Se, invece, non esistono dati individuali, la valutazione verrà svolta basandosi su particolari tabelle generali del rumore, le quali contengono varie informazioni sull'esposizione al rumore relativamente alle attività svolte nei decenni scorsi e che garantiscono la parità di trattamento. Per chiarire determinati aspetti spesso si rendono necessarie particolari misurazioni o sopralluoghi sul posto di lavoro.

La valutazione medica dei singoli casi viene svolta da un otorino della Suva, il quale dovrà chiarire soprattutto se il danno uditivo evidenziato è stato causato esclusivamente o in maniera preponderante da un'esposizione professionale. La decisione finale (riconoscimento della patologia come malattia professionale, garanzia dell'assunzione delle spese per un apparecchio acustico, livello di indicazione) viene comunicata all'assicurato dall'agenzia Suva competente.

9.2 La prevenzione dei danni uditivi alla Suva

9.2.1 Esami dell'udito nell'audiomobile

La Suva possiede una serie di veicoli meglio noti come «audiomobili» (figura 88) che assomigliano a dei bus, aventi ognuno due cabine. Negli audiomobili si eseguono gli esami dell'udito, il cui scopo è:

- informare i diretti interessati sulla loro capacità uditiva e sui pericoli che possono incontrare sul lavoro,
- esaminare periodicamente l'idoneità delle persone esposte professionalmente al rumore,
- scoprire se ci sono persone particolarmente sensibili al rumore o affette da un danno uditivo, stabilire i protettori auricolari giusti e motivare le persone al loro uso,
- scoprire eventuali disturbi all'udito allo stadio iniziale in modo da attribuire ad altre mansioni coloro che sono particolarmente sensibili al rumore o che per ragioni mediche non possono utilizzare i protettori auricolari,
- informare e sensibilizzare i responsabili e i diretti interessati sui rischi dei danni all'udito.

Gli audiomobili consentono di effettuare tutte queste indagini con un minimo dispendio di tempo (tempi di assenza ridotti) e garantiscono un'elevata qualità. Solitamente, le aziende sono chiamate a svolgere un simile esame ogni 5 anni.

Il programma degli audiomobili è finanziato con il supplemento sui premi netti dell'assicurazione infortuni professionali.

Figura 88: gli audiomobili Suva sono equipaggiati con tutto ciò che occorre per un esame dell'udito.

9.2.2 Quali persone devono sottoporsi ai test nell'audiomobile?

Per sapere quali persone hanno diritto a sottoporsi ad un esame dell'udito e quali sono invece obbligate a farlo, la Suva si avvale dei dati relativi all'esposizione al rumore sul posto di lavoro. L'esposizione è valutata in base alle tabelle generali del rumore oppure, se disponibili, in base ai protocolli di misura del rumore (vedi punto 6). Nella fattispecie, vengono sottoposte ad un test dell'udito sono le persone che sono state esposte ad un elevato rischio per l'udito durante l'esercizio della professione.

Le persone che durante lo svolgimento della professione sono state esposte ad un livello di rumorosità L_{EX} pari o superiore a 85 dB(A) hanno il diritto di effettuare un test dell'udito nell'audiomobile. Coloro che sono stati esposti a livelli L_{EX} pari o superiori a 88 dB(A) hanno l'obbligo di sottoporsi ad un esame.

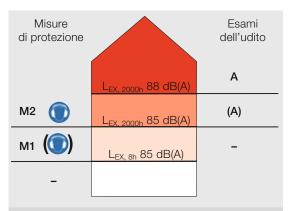


Figura 89: rappresentazione schematica dei valori limite in caso di rumore continuo.

Le persone che sono state esposte a rumore impulsivo con livelli di picco L_{Peak} pari o superiori a 135 dB(C) hanno diritto ad un esame dell'udito, a patto che il livello di esposizione sonora L_E raggiunga o superi i 120 dB(A). Se i valori L_E raggiungono o superano i 125 dB(A), i diretti interessati sono obbligati a sottoporsi ad un esame dell'udito.

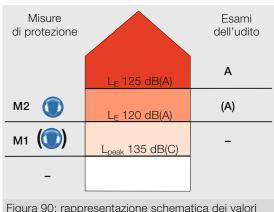
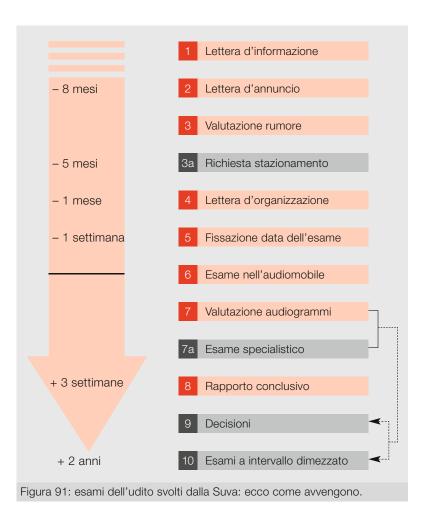


Figura 90: rappresentazione schematica dei valori limite in caso di rumore impulsivo.

Gli apprendisti che esercitano «lavori rumorosi» (ad es. falegnami, fabbri, costruttori delle vie di traffico) vengono sottoposti ad esame indipendentemente dal fatto che questi siano esposti effettivamente a rumore pericoloso durante lo svolgimento della loro attuale attività (limitata esposizione al rumore durante la scuola, lavori manuali senza esposizione a rumore intenso). Questo esame serve a verificare le condizioni dell'udito all'inizio dell'esposizione professionale al rumore (diagnosi precoce) e per individuare eventuali problemi fisici che in futuro potrebbero complicare ulteriormente un'eventuale riqualificazione professionale in caso di cambiamento del lavoro.


Sempre più spesso le aziende vogliono far visitare nell'audiomobile anche il personale non esposto a rumore pericoloso per l'udito. Questo perché è in corso una campagna sulla promozione della salute o perché un gruppo industriale ha deciso di abbassare il valore limite per l'esposizione al rumore. In linea di massima questi controlli sono possibili, ma sarà l'azienda ad assumersi personalmente i costi degli esami. Per maggiori chiarimenti e informazioni basta rivolgersi al Settore audiometria della Suva.

Suva

Divisione medicina del lavoro Settore audiometria Casella postale, 6002 Lucerna Telefono 041 419 51 11 audiometrie@suva.ch

9.2.3 Organizzazione e svolgimento degli esami dell'udito

Ogni anno negli audiomobili della Suva circa 38 000 persone provenienti da 4000 aziende si sottopongono ad un esame dell'udito. Pianificare questi controlli richiede un po' di tempo non solo per l'alto numero di persone coinvolte, ma anche per coordinare al meglio le operazioni. Tra il primo contatto con l'azienda e l'esame vero e proprio passano circa 8 mesi (figura 91). Gli esami sono pianificati in modo da ridurre al minimo i disagi per le aziende (brevi tragitti per arrivare, tempi di assenza dal lavoro ridotti). Possibilmente, si cerca anche di tener conto del lavoro a turni, della chiusura per ferie o del personale che opera in servizio esterno.

- 1 Le aziende che sono sottoposte all'OPI e che sono esposte a rumore dannoso per l'udito vengono informate dalla Suva sui loro obblighi in materia di tutela dei lavoratori e sulle misure di prevenzione da adottare.
- 2 La Suva informa le aziende quando avverrà il prossimo esame dell'udito e invita le stesse a segnalare il numero delle persone da sottoporre a test. Inoltre, l'azienda deve eventualmente fornire ulteriori informazioni (ad es. in caso di lavoro a turni).
- 3 Il punto 6 spiega in modo dettagliato le possibili modalità di valutazione del rumore.
- 3a In ogni regione la Suva chiede alle aziende selezionate se l'audiomobile può essere parcheggiato all'interno dell'area aziendale, se il personale di altre aziende può essere esaminato nello stesso luogo e se sono soddisfatti i requisiti logistici (spazio e allacciamento alla rete elettrica).
- 4 1-2 mesi prima dell'esame la Suva comunica il giorno esatto (inizio, metà o fine mese) e il luogo dove avverrà il test. L'azienda riceve una serie di istruzioni su come compilare i fogli base per le persone da esaminare e su come calcolare l'indennità per perdita di salario.
- 5 Il team dell'audiomobile si mette in contatto telefonicamente con la persona di riferimento dell'azienda una settimana prima per fissare l'ora esatta dell'esame.

6 L'esame viene svolto durante l'orario di lavoro. Ogni mezz'ora vengono esaminate 4 persone.
I fogli base di tutte le persone da visitare vengono consegnati al team dell'audio-

mobile all'inizio dell'esame.

- 7 Gli specialisti della Divisione medicina del lavoro della Suva analizzano i risultati degli esami.
- 7a Se i risultati non consentono di fare una valutazione esaustiva, i diretti interessati vengono invitati a sottoporsi ad una visita specialistica.
- 8 Infine, l'azienda riceve un rapporto completo e dettagliato con il nome delle persone esaminate e con i dati riguardanti l'uso dei protettori auricolari.
 La persona esaminata riceve un rapporto scritto individuale se è il caso che debba adottare particolari misure di protezione.
- 9 Tenuto conto dei reperti, le persone particolarmente esposte a rischi per l'udito vengono informate direttamente sul tipo di protettori da utilizzare (decisione di idoneità condizionale). Solo in casi rari, ad esempio se una persona soffre di una particolare patologia all'udito, la Suva deve vietarle di lavorare in un ambiente rischioso per l'udito (decisione di inidoneità).
- 10 Per ragioni mediche, la Suva può disporre per determinate persone che l'esame dell'udito avvenga con un intervallo più breve di circa 2 anni.

9.2.4 L'esame nell'audiomobile

Durante i controlli nell'audiomobile la Suva registra le professioni o le attività precedentemente svolte dalle persone esaminate con esposizione al rumore (anamnesi professionale). Con l'ausilio delle tabelle del rumore (vedi punti da 6.4 a 6.5) e grazie alla banca dati Suva sulle sorgenti di rumore è possibile valutare l'esposizione professionale al rumore fino al momento in cui viene svolto l'esame.

Il test dell'udito serve a determinare la soglia di udibilità (minimo livello sonoro che può essere percepito dall'apparato uditivo umano) nel campo compreso tra 500 e 8000 Hz (vedi punto 3.3) sotto forma di un audiogramma (figura 92). Durante il colloquio finale alla persona esaminata vengono comunicati i risultati e spiegato l'audiogramma. La curva uditiva individuale viene raffrontata con le curve di riferimento di altri soggetti normo-udenti della stessa età. La persona riceve anche una stampa dei risultati più importanti dell'esame. Infine, i lavoratori ricevono una consulenza in merito ai protettori auricolari più indicati in base alle esigenze lavorative.

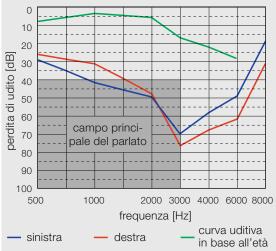
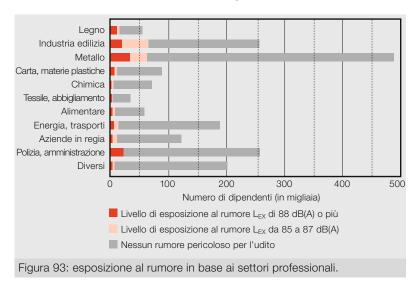


Figura 92: risultati del test dell'udito sotto forma di audiogramma.


Tutti i dati dell'anamnesi professionale e dell'esame dell'udito vengono archiviati e messi a disposizione per futuri accertamenti o chiarimenti.

Per una descrizione dettagliata dell'esame negli audiomobili vi consigliamo di consultare la pubblicazione Suva «Profilassi dell'ipoacusia da rumore professionale» (codice 1909/1.i).

9.3 Percentuale delle persone esposte al rumore in base ai settori professionali

La figura 93 mostra come si compone la percentuale delle persone che sono esposte al rumore in un determinato settore professionale. Si tratta di stime basate sul numero dei lavoratori per settore (anno 2002) e indicano la rispettiva percentuale di chi è esposto al rumore in un determinato settore.

Tra le persone esposte al rumore il 32 % lavora nel settore delle costruzioni, mentre il 20 % appartiene al settore del metallo. All'interno dei settori la percentuale più alta delle persone esposte al rumore spetta all'industria del legno (40 %) e al settore edile (24 %). Salta agli occhi la percentuale delle persone esposte al rumore nel settore dell'amministrazione (14 %). In questo caso si tratta soprattutto del personale di polizia che è esposto regolarmente alle esercitazioni di tiro e all'uso delle armi in caso di emergenza.

9.4 Tendenza dell'esposizione professionale al rumore

Negli ultimi decenni l'esposizione al rumore sul posto di lavoro ha subito un forte calo. La figura 94 mostra come per alcuni mestieri si sia verificato una notevole diminuzione dell'esposizione al rumore grazie soprattutto al progresso tecnologico. Le nuove tecniche di lavoro sono a basso impatto acustico e le macchine vengono sviluppate e concepite per limitare le emissioni sonore sin dalla fonte, mentre i veicoli sono dotati di cabine fonoisolanti.

Va anche detto che i moderni impianti di produzione non sono più manovrati, ma semplicemente controllati e questo ha ridotto di molto il numero delle persone esposte al rumore, Questa tendenza, tuttavia, è solo una conseguenza del taglio del personale e del trasferimento dei posti di lavoro all'industria. In altre parole, è un effetto collaterale positivo di un cambiamento drammatico della nostra economia.

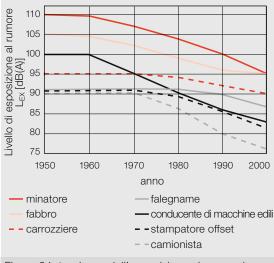
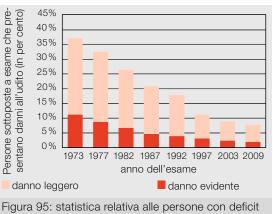



Figura 94: tendenza dell'esposizione al rumore in varie professioni.

Purtroppo, si osserva sempre più frequentemente che il progresso tecnologico si accompagna ad un aumento del rendimento, mentre la maggiore velocità di produzione compensa e annulla gli sforzi volti a ridurre l'inquinamento acustico. Per questo motivo su molti posti di lavoro l'esposizione al rumore non è affatto diminuita. Si tratta quindi di trovare nuove soluzioni a questa problematica.

9.5 Prevenzione dei danni all'udito: una strategia vincente

Le misure volte a prevenire i danni all'udito sono efficaci e questo è dimostrato. Negli ultimi 30 anni la percentuale delle persone con una patologia uditiva riscontrata nell'audiomobile si è ridotta in maniera significativa (figura 95).

uditivo esaminate nell'audiomobile.

Nonostante il dato positivo, il 17 % (696 casi nell'anno 2004) di tutte le malattie professionali riconosciute ha come origine e causa l'esposizione al rumore sul posto di lavoro (figura 96). Questo fa capire chiaramente che bisogna continuare sulla strada della prevenzione.

Figura 96: casi di ipoacusia sul totale del numero dei casi riconosciuti di malattia professionale nel periodo 2000–2004.

Per maggiori informazioni sui rischi per l'udito ascoltando musica, soprattutto per quanto riguarda gli eventi musicali (discoteche, party, concerti e esibizioni di bande musicali, ecc.) potete consultare l'opuscolo «Musica e danni all'udito» (codice 84001.i).

9.6 Rumore e tempo libero

È ovvio che anche nel tempo libero l'esposizione a rumore intenso può ostacolare la comprensione o danneggiare l'udito. Alcuni hobby, ad es. andare in moto, andare a caccia, suonare musica, lavorare in casa con apparecchi rumorosi oppure partecipare ad eventi musicali possono rappresentare un pericolo per l'udito se l'esposizione è protratta nel tempo. In questo caso è opportuno utilizzare i protettori auricolari anche nel tempo libero e cercare di ridurre l'esposizione al rumore.

L'azienda non può fare molto per quanto riguarda il comportamento tenuto dai suoi dipendenti al di fuori dell'orario di lavoro. Se i lavoratori sono consapevoli delle conseguenze di un danno uditivo, questa consapevolezza rimane anche nel tempo libero. Coloro che sul posto di lavoro utilizzano in maniera soddisfacente i dispositivi di protezione per l'udito, lo faranno anche nel tempo libero.

10 Riepilogo

L'ipoacusia non è curabile, ma si può evitare. La presente pubblicazione vuole contribuire a prevenire questa malattia professionale, che in Svizzera occupa il terzo posto per frequenza. Questo documento illustra le nozioni di base in materia di protezione e contiene numerose informazioni.

Il capitolo «Principi fondamentali di acustica» introduce il lettore al tema rumore. Il capitolo «L'udito» spiega il funzionamento dell'apparato uditivo e le sue straordinarie potenzialità. Qui il lettore potrà trovare spiegazioni sui danni provocati dal rumore e sugli effetti nella vita di tutti i giorni di un danno uditivo da rumore.

Il datore di lavoro è tenuto per legge ad evitare i danni all'udito provocati dall'esposizione sul posto di lavoro. Ma anche i lavoratori hanno determinati obblighi, oltre il diritto di essere consultati. Essi devono rispettare le norme di sicurezza e utilizzare i dispositivi di protezione individuale. Il capitolo 4 è dedicato interamente agli obblighi di legge in materia e alle basi giuridiche in materia di lotta al rumore.

Come si misura il rumore? A questa domanda risponde il capitolo «Fonometria». Qui troverete la descrizione degli strumenti di misura e del loro campo di applicazione. Verrà inoltre spiegato in dettaglio come avviene una misurazione del rumore.

Se il livello di rumore supera i valori limite, bisogna intervenire con opportune misure tecniche. Il capitolo dedicato alle misure antirumore fornisce una serie di soluzioni e di esempi pratici. Quando non è possibile ridurre il rumore ad un livello innocuo, i lavoratori devono usare i protettori auricolari. Il capitolo "Dispositivi di protezione individuale" passa in rassegna i dispositivi di protezione in commercio e spiega come utilizzarli.

Le aziende non sono sole nella lotta al rumore: la Suva, con il suo piano di prevenzione dei danni all'udito, le sostiene su vari livelli e assiste regolarmente i lavoratori esposti a rumore pericoloso (esami dell'udito nell'audiomobile).

La pubblicazione contiene 96 figure, numerose tabelle e un allegato con vari indirizzi e riferimenti a materiale di approfondimento.

Gli autori ringraziano:

- la Divisione medicina del lavoro della Suva per la verifica dei testi di medicina,
- tutti i colleghi alla Suva per aver contribuito alla stesura dell'opuscolo,
- le seguenti ditte che hanno gentilmente concesso le foto contenute nel documento:
 - ANADA AG, Glattbrugg
 - Atlas Copco (Schweiz) AG, Studen
 - B&K Messtechnik GmbH, Rümlang
 - Bauwerke AG, St. Margrethen
 - Brauerei Eichhof, Luzern
 - Emch+Berger AG, Bern
 - ETIS AG, Herisau
 - F. Maurer, Schallschutz, Biel
 - Friedrich-Schiller-Universität Jena, DE,
 Institut für Physiologie I/Neurophysiologie
 - H. Kubny AG, Zürich
 - Husqvarna Schweiz AG, Mägenwil
 - Ingenieurbüro Dollenmeier GmbH,
 Dielsdorf
 - Li&Co GmbH, Müstair
 - NORSONIC-Brechbühl AG, Grünenmatt
 - Stadler Rail AG, Altenrhein
 - Swiss Quality Paper Horgen Balsthal AG, Balsthal
 - WEZ Kuststoffwerk AG, Oberentfelden

Dr. Beat Hohmann Walter Lips Heinz Waldmann

Appendice 1: Materiale di approfondimento

Bibliografia

Tutte le pubblicazioni importanti sul rumore possono essere consultate, stampate oppure ordinate direttamente da Internet in formato PDF:

www.suva.ch/waswo-i, lemma «rumore».

Inserendo il codice di ordinazione si trova direttamente la pubblicazione desiderata. Esempio: www.suva.ch/waswo-i/86001

Per ulteriori informazioni sul rumore e sul riferimento alle fonti visitare la pagina: www.suva.ch/acustica

Testi di legge

I testi delle leggi e delle ordinanze federali sono disponibili in versione aggiornata all'indirizzo www.admin.ch/ch/i/rs/rs.html

Norme

Associazione svizzera di normazione SNV www.snv.ch

Le norme internazionali sono disponibili all'indirizzo www.iso.org o www.beuth.de o (in italiano) www.uni.com

Tedesco	Francese	Italiano	Codice
Lärmbekämpfung an Maschinen und Anlagen	Lutte contre le bruit des machines et des installations	_	66076
Elastische Lagerung von Maschinen	Suspension élastique de machines	_	66057
Lärmbekämpfung durch Kapselungen	Des enceintes pour lutter contre le bruit	_	66026
Schallemissionsmessungen an Maschinen	Mesurage des émissions acoustiques produites par les machines	_	66027
Industrielle Raumakustik	Acoustique des locaux industriels	Acustica ambientale nell'industria	66008
Der persönliche Gehörschutz	La protection individuelle de l'ouïe	La protezione individuale dell'udito	66096
Belästigender Lärm am Arbeitsplatz	Nuisances sonores aux postes de travail	_	66058

Tabella 29: pubblicazioni della Suva con informazioni approfondite su diversi problemi di rumore – dalla sorgente fino all'orecchio

Appendice 2: Definizione delle grandezze fonometriche

Definizioni internazionali, riferimenti a norme

Tedesco	Francese	Italiano	Inglese	Abbreviazione	Capitolo
Schallimmission Schalleinwirkung an einem Ort oder auf eine Person [Empfänger] bezogen	Exposition sonore dans un endrait ou référant à une personne [récepteur]	Immissione sonora rumore immesso in ambiente interno o esterno misurato in prossimità dei ricettori	Sound exposure sound immission in a specific place or referring to a per- son [receiver]	_	5.1
(A-bewerteter) Schall- druckpegel EN 61672-1	niveau de pression acoustique (pondéré A) ISO 1996	livello di pressione sonora (ponderata «A»)	(A-weighted) sound pressure level ISO 1996	L (L _{pA})	2.6 2.7 5.2
maximaler/ minimaler Schall- druckpegel (bei Verwendung der Zeitbewertung F) SN ISO 11200	niveau de pression acoustique maximal/ minimal (avec la pondération temporelle F) ISO 11200	livello di pressione sonora massimo/ minimo (con ponderazione temporale F)	maximum/ minimum sound pressure level ISO 11200	L _{Fmax} / L _{Fmin}	5.2
(A-bewerteter) äquivalenter Dauerschallpegel, Mitteilungspegel EN 61672-1 äquival. Dauer- schalldruckpegel	niveau de pression acoustique continu équivalent (pondéré A) ISO 1996	livello continuo equivalente di pressione sonora (ponderata «A»)	equivalent continuous (A-weighted) sound pressure level ISO 1996	L _{eq} (L _{Aeq})	2.8.1
Lärmexpositions- pegel, Richtlinie 2003/10/EG	niveau d'exposition au bruit ISO 1999	livello di esposizione al rumore Direttiva 2003/10/CE	noise exposure level ISO 1999	L _{EX}	4.7.1 6.1
Schallexpositions- pegel EN 61672-1	niveau d'exposition acoustique ISO 1996	livello di esposi- zione sonora	sound exposure level ISO 1996	L _E (SEL)	2.8.2 4.7.2
(C-bewerteter) Spitzenschall- druckpegel SN ISO 11200	niveau de pression acoustique de crête (pondéré C) ISO 11200	livello di pressione acustica di picco (ponderata «C»)	maximum (C-weighted) peak level ISO 11200	LpC,peak LCpeak LCcrête Lpeak, Lcrête	2.11 4.7.2 5.2 6.2
Tabella 30: valori d'immissione sonora					

Tedesco	Francese	Italiano	Inglese	Abbreviazione	Capitolo
Schallemission auf Schallquelle (Maschine) bezogen, ohne Raumeinfluss	Emission sonore référant a une source de bruit (machine), sans l'influence des environs	Emissione sonora riferita alla sorgente sonora (macchina), senza l'influsso del- l'ambiente	Sound emission referring to a sound source/ machine, without influence of the ambiance	_	5.1
(A-bewerteter) Emissions- Schalldruckpegel am Arbeitsplatz SN ISO 11200	niveau de pression acoustique d'émission au poste de travail (pondéré A) ISO 11200	livello di pressione sonora al posto di lavoro (ponderata «A») UNI EN ISO 11200	emission sound pressure levels at a work station (A-weighted) ISO 11200	L _{pA}	4.5
(A-bewerteter) Schallleistungs- pegel ISO 3744	niveau de puissance acoustique (pondéré A) ISO 3744	livello di potenza sonora (ponderata «A») UNI EN ISO 3744	sound power level (A-weighted) ISO 3744	L _{WA}	4.5 5.1 2.5 2.9
Tabella 31: valori d'emissione sonora.					

Appendice 3: Grandezze fisiche e acustiche, unità di misura

Simbolo	Significato	Unità	Capitolo
С	Velocità del suono nell'aria	m/s	2.4
DL2	Decadimento del livello sonoro per raddoppio		
	della distanza	dB	2.12.3, 7.5.2
f	Frequenza	Hz	2.4, 2.10, 3, 5.4
L, L _p	Livello di pressione sonora	dB	2.6, 4.12
L _E	Livello di esposizione sonora (sound exposure level)	dB	2.8.2, 4.7.2, 6.2, 9.2.2
L _{eq}	Livello continuo equivalente di pressione sonora	dB	2.8
L _{EX}	Livello di esposizione al rumore	dB	4.7, 4.8, 6, 9.2.2
L _{Peak}	Livello di picco sonoro	dB	5.2, 6.2, 9.2.2
L_W	Livello di potenza sonora	dB	2.9
L_{pA}	Livello di pressione sonora	dB	4.5, 4.12
р	Pressione sonora	Pa	2.2, 2.5, 2.6
pi	Esposizione al rumore in percentuale	%	6.1.2
r	Raggio	m	2.9
t, t _i	Tempo, durata di esposizione	S	6.1.2
Т	Periodo	S	2.3
T _m , T ₆₀	Tempo (medio) di riverberazione	S	2.12.2, 5.5
T _m	Tempo di misurazione	S	2.8
W	Potenza sonora	W	2.5, 2.9
λ	Lunghezza d'onda	m	2.4
Tabella 32: grandezze fisiche e acustiche utilizzate nella presente pubblicazione.			

SuvaCasella postale, 6002 Lucerna
Telefono 041 419 58 51
www.suva.ch

Codice 44057.i